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Executive Summary 

In this deliverable, we present the results of our human-machine interface prototype 

development and experimental studies related to haptic guidance and human factors for PAV 

flight. These studies cover a range of topics such as a prototype human-machine interface 

with Haptic shared control and a highway-in-the-sky display, the design of haptic aids, 

workload assessment with physiological metrics, looming warning signals and the 

development and identification of dynamic models of helicopters to aid the implementation of 

real-world augmentation strategies to aid non-expert pilots. All studies have been published 

and presented at European and international conferences. 
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1. Haptic shared control and a highway-in-the-sky display for PAVs 

In “Deliverable 3.4: Results from experiments”, we reported on an evaluation of a haptic 

shared control framework that was combined with a Highway-in-the-Sky display. An 

experiment was performed in which it was investigated whether this combination could result 

in better performance for non-expert pilots flying a personal aerial vehicle. Various 

representations of a flight trajectory in a highway-in-the-sky display were evaluated. It was 

found that a tunnel and a wall representation led to the best performance, whereas a highway 

representation resulted in worse performance and higher control activity and effort. Haptic 

guidance cues on the sidestick allowed pilots to achieve better performance with lower control 

activity.  

The implementation of the haptic shared control framework in Deliverable 3.4 was limited to 

the roll degree of freedom. We have extended this prototype to include all degrees of freedom 

and demonstrated it to the general public and the press at the myCopter Project Day on 20 

November 2014 in Braunschweig, Germany. Although no formal evaluation has been 

performed yet, anecdotal evidence suggests that anybody with at least some driving 

experience can easily get accustomed to the PAV flight dynamics and use the supplied haptic 

guidance cues to follow a flight trajectory without large deviations. Participants reported that 

they found the guidance forces in the various degrees of freedom very intuitive. 

  

Left: An overview of a flight trajectory. Right: lateral guidance forces and velocity 

cues were provided to participants on a sidestick. Additionally, a collective lever 

was used to provide guidance forces related to the vertical changes in the flight 

path (not shown). 
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A participant is the fixed-base simulator that was used as a demonstrator at the 

myCopter Project Day in Braunschweig, Germany. The participant is wearing eye-

tracking glasses to determine his gaze on the screen. The EEG electrodes are 

used for demonstration purposes to highlight the work of the Max Planck Institute 

for Biological Cybernetics towards assessing metrics for pilot workload 

measurements. 
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2. Pilot adaptation to different classes of haptic aids 

This study was published in the Journal of Guidance, Control, and Dynamics: 

M. Olivari, F. M. Nieuwenhuizen, H. H. Bülthoff and L. Pollini (2014) Pilot Adaptation to 

Different Classes of Haptic Aids in Tracking Tasks Journal of Guidance, Control, and 

Dynamics 37(6) 1741-1753. 

 

Abstract 

Haptic aids have been largely used in manual control tasks to complement the visual 

information through the sense of touch. To analytically design a haptic aid, adequate 

knowledge is needed about how pilots adapt their visual response and the biomechanical 

properties of their arm (i.e., admittance) to a generic haptic aid. In this work, two different 

haptic aids, a direct haptic aid and an indirect haptic aid, are designed for a target tracking 

task, with the aim of investigating the pilot response to these aids. The direct haptic aid 

provides forces on the control device that suggest the right control action to the pilot, whereas 

the indirect haptic aid provides forces opposite in sign with respect to the direct haptic aid. The 

direct haptic aid and the indirect haptic aid were tested in an experimental setup with non-pilot 

participants and compared to a condition without haptic support. It was found that control 

performance improved with haptic aids. Participants significantly adapted both their admittance 

and visual response to fully exploit the haptic aids. They were more compliant with the direct 

haptic aid force, whereas they showed stiffer neuromuscular settings with the indirect haptic 

aid, as this approach required opposing the haptic forces. 
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Haptic aids have been largely used inmanual control tasks to complement the visual information through the sense

of touch. To analytically design a haptic aid, adequate knowledge is needed about how pilots adapt their visual

response and the biomechanical properties of their arm (i.e., admittance) to a generic haptic aid. In this work, two

different haptic aids, a direct haptic aid andan indirect haptic aid, are designed for a target tracking task,with the aim

of investigating the pilot response to these aids. The direct haptic aid provides forces on the control device that suggest

the right control action to the pilot, whereas the indirect haptic aid provides forces opposite in sign with respect to the

direct haptic aid. The direct haptic aid and the indirect haptic aid were tested in an experimental setup with nonpilot

participants and compared to a condition without haptic support. It was found that control performance improved

with haptic aids. Participants significantly adapted both their admittance and visual response to fully exploit the

haptic aids. They were more compliant with the direct haptic aid force, whereas they showed stiffer neuromuscular

settings with the indirect haptic aid, as this approach required opposing the haptic forces.

I. Introduction

T HE control of an aerial vehicle is a complex task that requires a
pilot’s continuous attention. Automated systems are commonly

used to aid pilots during manual control tasks by accomplishing
different functions with minimal or reduced human intervention [1].
However, previous studies have highlighted several issues con-
cerning improper design of automation [2]. Amain issue is that pilots
are not aware of the control signal provided by the automated system.
This could lead to a decrease in pilot vigilance, overreliance on
automation, and loss of situational awareness [3,4]. To overcome
these issues, an external aid should always inform pilots about its
control strategy in order to keep the pilot in the loop [5].
Haptic aids have been proposed as a powerful approach to keep the

pilot in the loop by providing a tactile feedback on the control device
[6,7]. The pilot can sense the tactile feedback and is always aware of
the haptic control strategy. A growing body of literature has
investigated haptic aids for car-driving tasks [8,9] and for remotely
piloted vehicles [10,11]. However, to the best of our knowledge,
haptic aids are not commonly used in aviation, except as alert systems
(e.g., stick shaker that warns pilots of an imminent stall [12]).
Recently, researchers at NASA Langley developed a haptic flight
control system (HFC) for aircrafts with the main goal of achieving
easy-to-use personal air vehicles [13]. The HFC continuously moved

the stick by repositioning its neutral point in order to perform a
desired maneuver. Pilots can either follow the HFC control signal or
override it if they disagreed with its control action. The HFC was
evaluated in a motion-based simulator, showing beneficial effects in
terms of pilot workload and situational awareness [13]. In a different
research project (ALLFlight), the Institute of Flight Systems
Germany (DLR) developed anHFC for an EC135 helicopter [14,15].
Similar to the NASA’s system, this HFC was designed to move the
stick to a position corresponding to a desired trajectory. Evaluations
in flight showed workload reductions and improved situational
awareness when the HFC was activated [15]. Although both studies
found that tactile feedback can have beneficial effects from the pilot
point of view, they did not investigate the possibility of using different
designs of haptic aids.
The design of the force provided by the haptic aid becomes a

crucial issue, because it has to represent information that pilots can
easily exploit. Two different approaches have been proposed for
designing the haptic aid: the direct haptic aid (DHA) and the indirect
haptic aid (IHA) [16]. The DHA and IHA approaches are different in
nature; however, both showed beneficial effects in terms of pilot
performance [17]. This indicates that pilots are able to modify their
control strategy in order to take advantage of both DHA and IHA
approaches. The question arises as to how pilots adapt their control
behavior in relation to different haptic aids.
Control behavior can be analyzed by looking at pilot’s dynamic

responses to the external cues [18,19]. In a control task with haptic
and visual cues, two different dynamic responses need to be
investigated: the visual response and the neuromuscular response
[20,21]. The visual response describes the pilot response to the visual
cue, whereas the neuromuscular response represents the dynamic
settings of the pilot’s arm and determines how the pilot interacts with
forces (from disturbances or from haptic aids). Identification of these
two responses during control tasks with different haptic aids will
provide quantitative insights into the influence of haptic aids on pilot
control behavior.
Identification of pilot visual responses has been widely addressed

in the literature. McRuer’s theories highlight that humans modify
their visual response depending on external conditions such as the
dynamics of the controlled element [22]. However, these theories do
not consider the use of haptic cues, and, to the best of our knowledge,
nobody has studied whether these rules are still valid when pilots are
supported with haptic systems.
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There is also a vast amount of literature on the human capabilities
to adapt the neuromuscular response to the performed task. Research
has focused on neuromuscular adaptation during disturbance–
rejection tasks that require humans to adopt different neuromuscular
settings in response to force disturbances on the control device [23–
25]. More recent work has shown that the neuromuscular response in
an aircraft tracking task with different dynamics of the control device
is highly variable [26,27]. Other studies indicated that the ankle–foot
neuromuscular response of car drivers changes when a haptic aid is
employed during a car-following task [21]. The haptic aid was
designed in order to suggest to pilots the right control action. These
studies show that pilots adapt their neuromuscular response de-
pending on the task they have to perform, and that haptic cues influ-
ence their neuromuscular response. However, these studies do not
offer a complete discussion about how the neuromuscular response
changes in relation to different kinds of haptic aid.
Thegoal of this paper is to obtain a quantitative insight into how the

pilot neuromuscular and visual responses change with different
haptic aids. Two haptic systems are tested in a tracking task, one
designed according to the DHA approach, and the other according to
the IHA approach. The two approaches provide haptic information in
opposite ways and require humans to adopt different control strat-
egies. The pilot neuromuscular and visual responses are estimated by
using three different multiloop identification techniques. The first is
based on cross-spectral density analysis (CSD-based method) and
has been commonly used for identifying pilot responses [21,27].
However, a recent work showed that the CSD-based method might
provide a biased estimate of neuromuscular response if a non-
interference hypothesis is not fulfilled [28]. In the same study two
novel approaches were proposed to overcome this issue [20,28]: a
method based on autoregressive models with exogenous inputs
(ARX method), and an adapted version of CSD for a multiloop
tracking task (CSD-ML method). Our paper extends the ARX and
CSD-ML methods to a tracking task with haptic aids, and compares
the results with those obtained by the commonly used CSD-based
method. Analysis of the estimates shed new light on how humans
adapt their control behavior to take advantage of both haptic aids.
The paper is structured as follows: Section II outlines the design of

the two haptic aids. Section III presents a model that can be used to
describe pilot control behavior during a tracking task with a haptic
aid. Identification methods suitable for this model are then detailed.
The experimental procedure and setup are discussed in Sec. IV,
followed by the experimental results in Sec. V. Finally, conclusions
are drawn in Sec. VI.

II. Design of Haptic Aids for a Tracking Task

Haptic cues can be used as pilot support systems, with the main
objective of increasing the level of safety and performance in a
particular task. This paper focuses on a compensatory pitch tracking
task as depicted in Fig. 1. This task involves the minimization of a
tracking error e between a target trajectory θtar and the pitch angle θCE
of the controlled element CE, i.e., the aircraft. The tracking error is
shown on a compensatory display [18]. Haptic forces Fhapt are
continuously presented on the control device. As will be explained in
Sec. II.B, the forces provided by the haptic aid are combined with a
neutral point shift δNPS of the control device in some cases. Based on
both the visual information e and the haptic information felt through
the deflection of control device δCD, the pilot generates a force Fpilot

that results in a control action u. Two different approaches can be
taken to design the haptic cue: the DHA and the IHA [16].

A. DHA Approach

The DHA approach consists of producing kinesthetic sensations
that suggest the right control action to the pilot. This is achieved by
designing the DHA force generation system as a standard compen-
sator, which provides forces that reduce or regulate the tracking error
to zero. Figure 2 shows an example of force given by the DHA
system. With a negative tracking error e (pitch angle of aircraft too
large), the force Fhapt provided by DHA pushes the control device in

the forward direction. This generates a control signal u to the aircraft
that makes it pitch down, thus reducing the tracking error.
Although several techniques can be used to design a compensator,

experience shows thatmany of thesemay lead to a haptic “controller”
that generates stick motion differently from what the pilot would do
to minimize the tracking error [29]. In such a case, the pilot may
oppose the haptic cues instead of following them, which would result
in degraded closed-loop performance. To overcome this issue, our
approach is to design a DHA that “mimics” the pilot control strategy.
As described by McRuer’s theories, pilots adapt their control

strategy to yield pilot–aircraft open-loop dynamics that resemble a
single integrator around the crossover frequency ωc [22,30]:

HpHCE �
ωce

−sτe

s
(1)

Here, HCE is the transfer function of the controlled element CE,
whereas Hp represents the pilot response as a transfer function
between the tracking error e and the control signal u. Note that Hp

includes the dynamics of both pilot and control device (see Fig. 1).
The parametersωc and τe represent the pilot crossover frequency and
the equivalent time delay, respectively. The values of these param-
eters depend on the dynamics HCE and other external conditions.
To mimic pilot behavior, the dynamics of DHA were chosen to

yield open-loop dynamics of the combined DHA–aircraft that
resembles the crossover model in Eq. (1):

HDHAHCDHCE �
ωce

−sτe

s
(2)

where HDHA and HCD represent the transfer functions of the DHA
and control device, respectively. Equation (2) describes the open-
loop dynamics corresponding to the HDHA without pilot’s input.
Contrary to Eq. (1), the open-loop dynamics in Eq. (2) includes the
term HCD. This is because the force provided by the DHA is not

Fig. 1 Tracking task with compensatory display and haptic aids.

Fig. 2 DHA and IHA systems.
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applied directly to CE, but passes through the dynamics of the control
device. The dynamics HDHA can be deduced from Eq. (2):

HDHA �
ωce

−sτe

sHCDHCE

(3)

The resulting DHA force is given by

FDHA
hapt � HDHAe (4)

According to this design, the DHA can perform the tracking task
without pilot in the loop. When the pilot is in the loop, haptic aid and
pilot share the control of the aircraft. The pilot could either be as
compliant as possible and follow the haptic aid, or try to amplify the
forces to improve performance. In addition, the pilot could always
override the haptic control strategy in case of discordance.

B. IHA Approach

Contrary to the DHA approach, the IHA is designed to inform
pilots and increase situational awareness indirectly, and not to
suggest control actions. The challenging design aspect of IHA is to
convey the desired information in away that appears natural to pilots.
This approach has been adopted in different control taskswith the aim
of exploiting the natural tendency of humans to counteract external
forces presented on the control device. In some works dealing with
wind gust rejection in teleoperation, a tactile disturbance was
generated on the control device based on the effect of thewind gust on
the controlled element [16]. By opposing the disturbance on the
control device, pilots were able to reject thewind gust and control the
trajectory of the controlled element. In other cases dealing with
obstacle avoidance or with trajectory tracking, IHA systems were
derived from a DHA system designed for the same goal by simply
reversing the sign of the generated force [17,20,31,32]. The operator
had to oppose the forces given by IHA to achieve the task also in
these cases.
In our study, the IHAwas designed to provide a force opposite in

sign with respect to the DHA, i.e., opposite in sign to the force from a
controller that reduces the tracking error. However, this design
presents a considerable drawback: If the pilot is not in the loop or is
not providing correct commands, the IHA force would generate a
control action that would lead the aircraft to fly away from the target
trajectory. It is clearly unwise to insert a possibly destabilizing
component in the control loop. To overcome this issue, the neutral
point of the control device is shifted according to the current force
provided by the IHA system, so that the actual control command to
the aircraft is zero when the pilot does not interact with the control
device [32,33]. This allows the IHA system to provide sensations to
the pilot (via the stick motion) without having an effect on the actual
command given to the aircraft. Note that, according to this design,
pilots can follow the target trajectory by simply holding the stick in
the center.However, experimental evidence has shown that a pilot can
improve the performance by actively responding to the resulting
visual error.
The neutral point shift is implemented by using the compensation

scheme shown in Fig. 2. The control device is subject to two external
forces: the force applied by the pilot Fhuman and the force applied by
the haptic systemFhapt. The deflection induced byFhapt must become
the new neutral point δNPS. To achieve this, the effect of Fhapt on the
control device is simulated with a model of the control device ĤCD

and subtracted from the actual position of the stick. This difference
becomes the actual input u for the aircraft:

u � δCD − δNPS � δCD − ĤCDFhapt (5)

Figure 2 shows an example of an application of the IHA. With a
negative tracking error (pitch angle of aircraft too large), the IHA
generates a force that pulls the control device in the backward
direction. The neutral point is shifted in the backward direction
according to the IHA force, so that the control command provided to
the aircraft is zero if the pilot is out of the loop. If the pilot counteracts

the haptic force instead, he or she would move the control device to a
more forward position than the neutral point. This generates a control
signal to the aircraft that makes it pitch down, reducing the
tracking error.

C. Comparison of the DHA and IHA Approaches

It is now possible to compare a general DHAwith a general IHA
with neutral point shift. Let us consider the behavior of the DHA and
IHA in two different conditions: a pilot showing infinite compliance
with aDHAsystem, and a pilot showing infinite stiffnesswith an IHA
system. These conditions represent extreme situations inwhich pilots
do not actively respond to the visual feedback, but adopt only a
passive behavior that allows to take advantage of the two haptic aids.
In the first case, the haptic force FDHA

hapt is the only force applied to the
control device; thus, the resulting control signal u is given by

uDHA � HCDF
DHA
hapt (6)

whereHCD represents the real transfer function of the control device.
On the other hand, with IHA and an infinitely rigid pilot, the control
device is constantly held in the center (δCD � 0). The resulting IHA
control signal is thus caused only by the neutral point shift:

uIHA � δCD − δNPS � 0 − δNPS � −ĤCDF
IHA
hapt (7)

Under the hypothesis of an exact model of the control device
(HCD � ĤCD) and if the IHA force is calculated with the same
dynamics as the DHA but opposite in sign (i.e.,FIHA

hapt � −FDHA
hapt ), the

two approaches result in the same control signal for the aircraft:
uIHA � uDHA. This analogy induced us to employ an identical design
of the IHA and the DHA forces, except for a difference in sign. The
full dynamics of both haptic aids will be detailed in Sec. IV.

III. Modeling and Identification of Pilot Control
Behavior

In previous studies, the use of haptic cues based on DHA and IHA
has shown beneficial effects in terms of pilot performance [8,17]. The
question arises as to how pilots can take advantage of two haptic aids
that actually feed forces opposite in sign into the control loop. This
can be explained by the pilot capability of modifying the control
strategy to handle different external conditions [34]. To gain a quanti-
tative insight into how haptic cues influence pilot control strategy, a
model of pilot control behavior is needed that can highlight the effects
of haptic cues on the pilot’s dynamic responses.
In a compensatory tracking task with haptic aid, two dynamic

responses define the pilot control behavior: the visual response and
the neuromuscular response [35]. The visual response describes how
the pilot generates a control action based on the tracking error shown
in the visual display. The neuromuscular response represents the
dynamic settings of pilot’s arm. By varying these settings, pilots can
oppose, or be compliant with, the haptic aid. Thus, the neuromuscular
response provides an indication of how the pilot interacts with
haptic aids.
A model of pilot control behavior that includes both visual and

neuromuscular responses was previously developed [35] and was
used for various scenarios, such as a tracking task without haptic aid
[35] and car following with haptic aid [21]. Figure 3 shows themodel
adapted for the task investigated in this paper, i.e., a compensatory
tracking task with haptic aid. The pilot is described with two describ-
ing functions: the visual response VIS and the inverse of admittance
ADM−1. The visual response VIS describes the force response to the
display presentation e. In the literature, the term “visual response”
often denominates the response from e to the stick deflection δCD, i.e.,
the system Hcontrol in Fig. 3 [18,27]. However, in a control task with
haptic aids,Hcontrol includes the dynamics of the haptic aid. Defining
the visual response as the transfer function from e toFvis allows us to
separate the haptic system from the pilot responses.
The admittance ADM represents the dynamic properties of

neuromuscular response and is defined as the causal relationship
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between the force acting on the arm (input) and the position of the arm
(output) [36]. Higher values of admittance during the tracking task
indicate that pilots are compliant with the haptic aid, whereas lower
values indicate that pilots are counteracting the force provided by the
haptic aid. It is possible to measure the range in which admittance
varies by performing disturbance–rejection tasks, the so-called
classical tasks [36]. These tasks consist of minimizing the stick
deflection δCD (position task, PT), relaxing the arm (relax task, RT),
and minimizing the force Fpilot applied on the control device (force
task, FT), in response to force disturbances on the control device. The
PTand FT force pilots to adopt minimum and maximum admittance,
respectively, whereas the RT highlights inertial properties of the
arm [36].
For the purposes of this study, the two blocks VIS andADM−1 are

assumed to be linear. Noise and nonlinear contributions to the pilot
forceFpilot are accounted for by the remnant signal n [22]. The blocks
HDHA and HIHA represent transfer functions of the DHA and IHA,
respectively. Both the DHA and IHA generate a force Fhapt on the
control device based on the dynamics of the visual error e. The force
generated by the haptic aid is sensed by pilots through its effect on the
deflection of the control device δCD. The signal δNPS represents the
neutral point shift used in the IHA approach. As explained in Sec. II,
the dynamics of δNPS are calculated by simulating the effect of the
haptic force Fhapt on the identified dynamics dCD of the control
device. In the DHA approach, δNPS is absent.
Identification of themodel in Fig. 3 allows for an evaluation of how

haptic cues influence a pilot’s admittance and visual response.
Because two dynamic responses need to be estimated, i.e., the
admittance and the visual response, identification methods require
two external forcing functions to be inserted into the control loop
[37]. The target trajectory θtar and an additional disturbance force on
the control device Fdist can be used for this purpose. Figure 4 shows
power spectral densities and time realizations of the two forcing
functions adopted in our experiment. Their design will be detailed in
Sec. IV. For now, we would indicate that Fdist and θtar are chosen to
have power at different sets of frequency points, ffdg and fftg,
respectively.

Three different identification techniques are used in this paper: a
CSD-based method, an ARX method, and a novel CSD-ML method
[20,28]. These three methods were tested and compared in a previous
study dealing with a compensatory tracking task without haptic aids
[28]. This paper extends their applicability to the presence of a
haptic aid.
TheCSD-basedmethod has been largely applied tomultiloop pilot

identification [21,27]. This method estimates the frequency response
function (FRF) of the admittance at frequencies in ffdg by using
sample cross-spectral densities:

Ĥadm�f� �
ŜFdistδCD�f�
ŜFdistFpilot

�f�
; f ∈ ffdg (8)

The term Ŝvw indicates the sample CSDbetween the generic signals v
and w, which is calculated as

Ŝvw�f� � �V�f�W�f� (9)

where V and W are the discrete Fourier transforms of v and w,
respectively, and �V indicates the complex conjugate of V [38]. The
squared coherence function Γ̂2 is usually used to evaluate the
reliability of the estimate [39]:

Γ̂2
adm�f� �

jŜFdistδCD�f�j
2

ŜFdistFdist
�f�ŜδCDδCD�f�

; f ∈ ffdg (10)

The coherence Γ̂2 is a measure of how much an output signal is
linearly related to an input signal [40]. It assumes values between 0
and 1 and decreases with noise and nonlinearities.
The FRF of the pilot visual response cannot be estimated directly

with the CSD-based method [28]. On the other hand, the FRF of
the control transfer function Hcontrol between the visual error e and
the deflection of the control device δCD can be estimated at the
frequencies fftg according to

a) DHA b) IHA
Fig. 3 Model of pilot behavior in a compensatory tracking task with a haptic aid.
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Ĥcontrol�f� �
ŜθtarδCD�f�
Ŝθtare�f�

; f ∈ fftg (11)

The squared coherence function corresponding to Ĥcontrol is given by

Γ̂2
control�f� �

jŜθtarδCD�f�j
2

Ŝθtarθtar�f�ŜδCDδCD�f�
; f ∈ fftg (12)

Similarly, the open-loop transfer function between the visual error e
and the position of the controlled element θCE and the corresponding
squared coherence function are estimated as

ĤOL�f� �
ŜθtarθCE �f�
Ŝθtare�f�

; f ∈ fftg (13)

Γ̂2
OL�f� �

jŜθtarθCE�f�j
2

Ŝθtarθtar �f�ŜθCEθCE �f�
; f ∈ fftg (14)

As previousworks have highlighted, the CSD-basedmethod requires
that the contribution of the disturbance forceFdist in the visual error is
negligible (noninterference hypothesis) [20,28]. If the noninterfer-
ence hypothesis is not fulfilled, the CSD-based method provides a
biased estimate of the admittance even with high values of Γ̂2

adm. In
such cases, the ARX and CSD-MLmethods can be employed. These
methods do not require any noninterference hypothesis, because they
explicitly account for the possible presence of the contribution of
Fdist in the visual error [20,28].
The ARX method operates in the time domain. The method

considers the stick deflection δCD as the output of a linear systemwith
inputs e and Fdist (see Fig. 3):

δCD � Hee�HFFdist �Hnn (15)

whereHe,HF, andHn represent the transfer functions between e and
δCD, between Fdist and δCD, and between n and δCD, respectively.
Note that He, HF, and Hn depend on the values of the transfer
functions Hadm, Hvis, HCD, and HHAPT.
The linear system in Eq. (15) is fitted with a multi-input linear

ARX model, which provides estimates ofHe and HF as polynomial
transfer functions [38]. The pilot admittance Ĥadm, the visual re-
sponse Ĥvis, the control transfer function Ĥcontrol, and the open-loop
transfer function ĤOL are then calculated from the estimates Ĥe and
ĤF and from the known transfer functions HCD, HHAPT, HNPS, and
HCE by using block diagram algebra:

Ĥadm �
HCDĤF

HCD − ĤF

(16)

Ĥvis �
Ĥe −HHAPTĤF

ĤF

(17)

Ĥcontrol � Ĥe (18)

ĤOL � �Ĥe −HNPS�HCE (19)

Here, HHAPT represents the force generation dynamics of the haptic
aid (HHAPT � HDHA andHHAPT � HIHA for DHA and IHA, respec-
tively). HNPS describes the dynamics according to which the neutral
point shift is calculated from the tracking error. In theDHAapproach,
HNPS � 0 because there is no neutral point shift, whereas in the IHA
approach, HNPS � HHAPTHCD. Note that the estimates Ĥvis and
Ĥadm account only for pilot contributions, because the dynamics of
haptic aids are removed by using block diagram algebra. On the other

hand, the systems Ĥcontrol and ĤOL also include the haptic dynamics
(see Fig. 3).
To test how well the estimated ARX model predicts the measured

output signal, the variance accounted for (VAF) index can be
calculated [41]. The VAF is defined as

VAF �
�
1 −

P
N
k�1 jδCD�tk� − δ̂CD;ARX�tk�j2P

N
k�1 jδCD�tk�j2

�
× 100% (20)

where tk represent the time samples, and δCD and δ̂CD;ARX are the
measured and predicted (by theARXmodel) deflection of the control
device, respectively. The value of the VAF varies between 0% and
100%, with 100% indicating that the ARX model perfectly models
the measured output signal.
The CSD-ML operates in the frequency domain. This method first

uses estimates of cross-spectral densities to calculate the FRF Ĥtar

between θtar and δCD, and the FRF Ĥdist between Fdist and δCD:

Ĥtar�f� �
ŜθtarδCD�f�
Ŝθtarθtar �f�

(21)

Ĥdist�f� �
ŜFdistδCD �f�
ŜFdistFdist

�f�
(22)

In our experiment, the forcing functions Fdist and θtar were designed
to have power at different sets of frequencies, ffdg and fftg,
respectively (see Fig. 4). This implies that Ĥdist can be estimated only
on frequencies ffdg, and Ĥtar on frequencies fftg.
To obtain estimates of Ĥtar and Ĥdist on a common set of frequen-

cies, the CSD-ML method applies an interpolation procedure. More
precisely, the values Ĥdist�fd� are interpolated to estimate Ĥdist at
frequencies in fftg, and the values Ĥtar�ft� are interpolated to
estimate Ĥtar at frequencies in ffdg. Note that extrapolation of the
values Ĥfd �ft� at frequencies outside the range of fftg would give
unreliable estimates. Because the range of fftg is smaller than the
range of ffdg (see Fig. 4), Ĥtar cannot be estimated on all the
frequencies ffdg, but only on those frequencies of ffdg that arewithin
the range of fftg. These frequencies, together with the frequencies in
fftg, constitute the set �f in which both Ĥdist and Ĥtar can be
calculated:

fmin � max�minfftg;minffdg� (23)

fmax � min�maxfftg;maxffdg� (24)

�f � ffjf ∈ �fftg ∪ ffdg� and fmin ≤ f ≤ fmaxg (25)

After Ĥtar and Ĥdist have been estimated for the common set of
frequencies �f, they are combined using block diagram algebra to
obtain estimates of the admittance Ĥadm, the visual response Ĥvis, the

control transfer function Ĥcontrol, and the open-loop transfer function

ĤOL. Expressions for Ĥadm, Ĥvis, Ĥcontrol, and ĤOL are given as
follows:

Ĥadm�f� �
Ĥdist�f�HCD�f�

HCD�f� −HCD�f�Ĥtar�f�HCE�f� − Ĥdist�f�
(26)

Ĥvis�f� � −HHAPT�f� �
Ĥtar�f�
Ĥdist�f�

�1 −HNPS�f�HCE�f�� (27)

Ĥcontrol�f� �
Ĥtar�f� −HNPS�f�
1 − Ĥtar�f�HCE�f�

�HNPS�f� (28)
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ĤOL�f� � HCE�f�
Ĥtar�f� −HNPS�f�
1 − Ĥtar�f�HCE�f�

; f ∈ f �fg (29)

These expressions are essentially the same as those for a generic
closed-loop control task [28] but include the influence of the DHA
and IHA.

IV. Experiment Design for Identification of Pilot
Behavior

An experiment was conducted to investigate the effects of different
haptic aids on human behavior in a pitch tracking task. The experi-
mental design and hypotheses are described in this section.

A. Control Task and Apparatus

The experiment was designed to evaluate human behavior in a
compensatory pitch tracking task with haptic aids as described in
Sec. II. The experimental setup is shown in Fig. 5. Participants had to
minimize the error between the target signal θtar and the pitch attitude
of the controlled element θCE. Only the tracking error was shown on
the visual display. During the tracking task, participants were provid-
ed with continuous haptic information as additional forces on the
control device. In addition to the haptic aid, the control device was
perturbed by the disturbance force Fdist introduced to allow
identification of the neuromuscular admittance.
The control device was a control-loading cyclic stick from

Wittenstein Aerospace & Simulation GmbH, Germany, which can
provide force feedback to participants. The stick dynamics were
estimated and are given by

HCD�s� �
1

1.522s2 � 8.832s� 86.469
�rad∕N� (30)

During the experiment, the lateral axis of the stick was fixed, leaving
the longitudinal axis free for performing the control task. No armrest
was present for the arm that controlled the stick, and subjects were
asked not to use their legs as support. All the components were driven
by a real-time computer running xPC Target (MathWorks, Inc.) and
data were logged at 100 Hz.

B. Independent Variables

To investigate the effects of haptic aids on human behavior,
different approacheswere implemented to provide the force feedback
on the control device. The independent variable in this experiment
was the approach used to design the haptic aid. Two haptic aids
designed according DHA and IHA approaches were tested and
compared to a baseline tracking condition without haptic aid. This
resulted in three experimental conditions.

C. Controlled Element and Haptic Aid Dynamics

The controlled element was simulated using the following
dynamics:

HCE �
18

s�s� 3� �rad∕rad� (31)

These dynamics, although idealized and not representative of a wide
range of aircrafts, have been commonly used to investigate pilot
behavior in tracking tasks [30,42]. At higher frequencies, the selected
dynamics are similar to a double integrator, which are difficult to
control for a participant. These dynamics are expected to accentuate
the differences in human performance between different haptic aid
conditions.
The design of the DHA and IHA was extensively explained in

Sec. II. To make sure that the haptic aid is designed such that it
behaves similarly to the human, values for the human crossover
frequencyωc and the equivalent time delay τe were estimated during
a preliminary design phase for a tracking task without haptic aids.
The preliminary study used the same apparatus, controlled element,
and target signal as the real experiment. The resulting values were
ωc � 2 rad∕s and τe � 0.16 s. These values were comparable with
values found in a previous studywith similar experimental conditions
[30]. The dynamics of the DHAwere then chosen as in Eq. (3), but
the delay τe in Eq. (3) was set to 0 s instead of the value estimated
in the preliminary design phase, so that the haptic response was
slightly faster than the human response. This was expected to
improve the help provided by the haptic aid. Furthermore, the
dynamics of the control device HCD were approximated by its
static gain KCD � HCDjs�0, as HCD behaves like a gain at fre-
quencies around ωc, where the crossover model provides reliable
estimates for the human behavior. Finally, an additional pole was
placed at high frequency to ensure causality of HDHA. The resulting
dynamics HDHA are given by

HDHA �
ωc

sKCDHCE

·
1

0.05s� 1
≈ 10

s� 3

0.05s� 1
�N∕rad� (32)

The corresponding DHA force is given by Eq. (4).
As detailed in Sec. II, the IHA force was generated with the same

dynamics of the DHA force but opposite in sign. Thus, the dynamics
of the IHA are given as

HIHA � −HDHA (33)

and the IHA force as

FIHA
hapt � HIHAe (34)

The IHAwas combined with a neutral point shift. The dynamics of
the neutral point δNPS are calculated as explained in Sec. II:

δNPS � ĤCDF
IHA
hapt (35)

D. Forcing Functions

The two forcing functions Fdist and θtar were designed as multi-
sine signals [43]:

θtar�t� �
XNt
j�1

Tj sin�2πfTj t� ψTj� (36)

Fdist�t� �
XNd
j�1

Dj sin�2πfDj t� ψDj � (37)

Each frequency fTj and fDj was chosen as an integer multiple of the
experimental base frequency fB � 1∕T, where T is the measurementFig. 5 Experimental setup.
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time. The measurement time of an individual trial was T � 81.92 s,
yielding a base frequency fB � 0.0122 Hz.
To distinguish the contribution of each forcing function to the

measurements, different sets of frequency points were assigned to
Fdist and θtar [36] (see Fig. 4a). The two sets consisted of cluster of
two adjacent frequency points to allow for frequency averaging.
The force disturbance Fdist contained power at frequencies from

0.01 up to 10 Hz, to allow for estimation of admittance on a large
range of frequencies. The power level at low frequencies, from 0.01
up to 1 Hz, was set to 1.2 N2 and distributed among linearly spaced
frequencies. In this way, the contribution of Fdist on the measure-
ments could be distinguished while participants were not disturbed
during the tracking task. At high frequencies, from 1 up to 10 Hz, the
power level was set to 0.8 N2 and distributed among logarithmically
spaced frequencies according to the reduced power method [44]. In
this method, reduced power is applied at high frequencies in order to
enable estimation of the admittance at high frequencies without
influencing low-frequency behavior.
The target signal θtar contained power at frequencies from 0.1 up to

3 Hz. To avoid crossover regression, the distribution of the
amplitudes Tj was shaped according to the following filter [43,45]:

Hf �
�s� 10�2
�s� 1.25�2 (38)

For both θtar and Fdist, the phases were chosen randomly to obtain
unpredictable behavior. A cresting technique was applied to avoid
amplitude peaks in the time realization [39,46]. Figure 4b shows the
time realizations of Fdist and θtar. Note that both forcing signals were
smoothed in the first and in the last 2 s of the experimental time
interval to avoid transient effects.

E. Haptic System Performance and Influence of Force Disturbance

According to our design of haptic aids, participants could perform
the task by adopting a passive behavior, i.e., by being as compliant as
possible with DHA, and by holding the stick in the center with IHA.
In these cases, the control input to the aircraft is essentially provided
by the haptic aid. Analysis of performance and control activity in
these extreme situations is crucial to understand how much partic-
ipants add to the haptic control action during the real experiment. It is
also important to test these situations with and without injecting the
Fdist signal that must be present during the experiment with pilots for
identification purposes.
Table 1 shows the variances of the force Fhapt, the stick deflection

δCD, the neutral point shift δNPS, and the tracking error e, obtained in
this two extreme situations: human showing infinite compliancewith
DHA, and human holding the stick in the center with IHA. The first
two columns show the results without Fdist. It is possible to note that
1) σ2�FDHA

hapt � ≈ σ2�FIHA
hapt�

2) σ2�δDHACD � ≈ σ2�δIHANPS�
3) σ2�eDHA� ≈ σ2�eIHA�
These equalities are in complete agreement with the haptic aid

design concepts explained in Sec. IV.C.
The last two columns of Table 1 show the variances obtained when

Fdist is chosen as in Eq. (37). The IHA is not influenced by the
disturbance force. In fact, the stick is clamped in the center with an
infinitely stiff pilot, andFdist does not result in any disturbance to the
aircraft. However, the values of DHAvariances change when Fdist is
chosen as in Eq. (37). This is because the force disturbance Fdist

actually deflects the control device and thus becomes a disturbance
input for the aircraft.

F. Participants and Experimental Procedure

Eight participants took part in the experiment, seven men and one
woman. All participants were Ph.D. students at the Max Planck
Institute for Biological Cybernetics, and some had general experi-
ence with flight simulators and closed-loop control tasks. A financial
compensation was offered for their participation. Before starting the
experiment, participants received instructions about the objective of
the experiment and the control tasks they would perform.
The experiment was split into two parts. The first part consisted of

measuring admittance during force–disturbance–rejection tasks, the
so-called classical tasks. Participants were asked to adopt three
different control behaviors in response to a disturbance force applied
to the control device [47]:
1) RT: Participants relaxed their arm and adopted a passive

behavior. The display was turned off to prevent any distraction.
2) PT: Participants minimized the stick deviation by resisting the

disturbance force. The display showed the stick deviation to help
participants perform the task.
3) FT: Participants were compliant with the disturbance force and

minimized the force applied to the stick. During the first trials, the
display showed the force applied to the stick. After some training, the
display was switched off.
During PT trials, participants must adopt maximum stiffness (low

admittance), whereas during FT trials participants must adopt
minimum stiffness (high admittance). Identification of admittance in
these two tasks thus gives an indication of the range over which
admittance changes. On the other hand, the RT trials allow for an
evaluation of the inertial properties of the arm. The disturbance force
for the classical tasks was designed as a multi-sine signal similar to
Fdist used in tracking tasks, but with different power at low frequen-
cies. The power at low frequencies was varied between the three tasks
to obtain the same standard deviation of the stick deflection for all
classical tasks. In this way, nonlinearities of the neuromuscular
system due to large stick deflections were negligible. The values of
the power at low frequencies for FT, RT, and PTwere approximately
chosen 1, 1.5, and 6.5 times larger than in the tracking task,
respectively.
To avoid learning effects, the three classical taskswere presented in

a counterbalanced order between participants using a Latin square
matrix [48]. Participants were trained on each task until a stable
performancewas achieved. The performancewas evaluated using the
variance of the stick deflection for the PTand RT, and the variance of
the force applied by participants for the FT. After the training phase,
three 90 s runs of each task were performed for averaging purposes.
The second part of the experiment consisted of the compensatory

tracking task. Participants were instructed to minimize the tracking
error shown on the compensatory display. Three different tracking
conditions were investigated, i.e., tracking with No Haptic Aid
(NoHA), tracking with DHA, and tracking with IHA. In each condi-
tion, participants were informed on the possible presence of haptic
aids, but they were not informed of how the haptic aids were de-
signed. This was done to reduce the possibility that participants
would have focused only on following or opposing the force gener-
ated by the haptic aid, instead of actively performing the tracking
task. The conditions were presented in counterbalanced order
between participants using a Latin square matrix. For each condition,
participants performed a training phase and a measurement phase.
During the training phase, a number of runs were executed until
participants achieved a stable performance evaluated using the
variance of the tracking error. After the training phase, eight repeti-
tions of the condition were executed and measurement data were
recorded. Participants took regular breaks during the experiment. The
whole experiment lasted approximately 3 h.

G. Dependent Measures

During the experiment, the force Fhum, the stick deflection δCD,
and the visual error e were logged at 100 Hz. The experimental time

Table 1 Measures for haptic aids with passive pilot

No Fdist With Fdist

DHA IHA DHA IHA

σ2�Fhapt� �N2� 0.72 0.70 2.35 0.70
σ2�δCD� �deg2� 0.45 0 2.18 0
σ2�δNPS� �deg2� 0 0.44 0 0.44
σ2�e� �deg2� 0.55 0.54 2.00 0.54
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was 90 s, ofwhich 81.92 swas considered for data analysis. To reduce
the noise, the measured signals were averaged in the time domain
over all repetitions of each experimental condition (NoHA, DHA,
and IHA).
A number of dependent measures were calculated from the

recorded data. The variance of the tracking error ewas calculated as a
measure of tracking performance:

σ2�e� �
P

N
k�1 �e�k� − �e�2

N
(39)

where N represents the number of time samples and �e is the mean
value of the visual error. Lower values of σ2�e� indicate better
tracking performance. The control activity was evaluated using the
variance of control signal δCD. The variance of the force Fpilot was
calculated as an indication of the amount of force needed by
participants to perform the tracking task. A one-way repeated mea-
sures analysis of variance (ANOVA) was used to investigate the
statistical effect of the haptic aid on the measured variance metrics.
For each ANOVA, the hypothesis of sphericity was tested by
Mauchly’s test. If data violate the sphericity hypothesis, the values
of the F-ratio cannot be compared to tabulated values of the
F-distribution. In this case, the Greenhouse–Geisser correction was
applied [49]. The correction adjusts the degrees of freedom of the
F-ratio to make the F-ratio more conservative and comparable to the
tabulated values. Post-hoc tests using the Bonferroni correction were
performed to allow for pairwise comparisons between the three
tracking conditions. This correction uses a reduced critical level to
test statistical significance of each pairwise comparison.
Furthermore, the measured signals were used to identify and

compare pilot control behavior between the experimental conditions.
The identification methods detailed in Sec. III were used to estimate
the admittance, the visual response, and the open-loop transfer func-
tion. To reduce the variance of the estimates given by the CSD-based
andCSD-MLmethods, the estimateswere averaged over each cluster

of frequency points [50]. The estimates of Hadm, Hvis, Hcontrol,
and HOL were compared by looking at their FRFs. In addition, the
estimates of Hadm during the tracking tasks were compared with the
admittances estimated during the classical tasks. For the classical
tasks, admittance was estimated according to the CSD-based method
shown in Eq. (8). In these tasks, the method provides unbiased
estimates (contrary to during the tracking tasks) [20].

H. Hypotheses

Both DHA and IHA are expected to yield better tracking
performance with respect to the tracking task with NoHA, because
they are designed to help humans achieve their task. Furthermore, it is
hypothesized that participants would adapt their admittance
depending on the haptic aid. Because the DHA is designed to be
followed by humans, participants are expected to be more compliant
in the DHA condition, resulting in higher admittance values. Instead,
the IHA system is designed as a disturbance that the human needs to
reject, and thus participants are expected to show a stiffer
neuromuscular setting, resulting in lower admittance values. During
the NoHA condition, the admittance is expected to lay in the middle
of the two previous cases.
Finally, it is hypothesized that the haptic aid would also influence

the participants’ visual response. Because the DHA provides a por-
tion of the control action needed to track the target, a smaller control
action is needed from the participants. The visual response is there-
fore expected to have a lower gain in DHA than during the other two
conditions.

V. Results of Pilot Adaptation to Different Haptic Aids

This section presents the experimental results of the eight partic-
ipants. Tracking performance and control effort are compared
between the tracking conditions with and without haptic aids. The
influence of haptic aids on human control behavior is investigated by
estimating participants’ admittance, the visual response, and the
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Fig. 6 Means and 95% confidence intervals of measured variance over all participants.
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open-loop transfer function using the CSD-based, CSD-ML, and
ARX methods detailed in Sec. III.

A. Tracking Performance and Control Activity

To evaluate the control effort, the variance of participant force
σ2�Fpilot� and control device deflection σ2�δCD� were calculated for
three experimental conditions: tracking with NoHA, tracking task
with DHA, and tracking task with IHA.
Figure 6a depicts the mean values and 95% confidence intervals of

σ2�Fpilot� over all participants, together with the values for the vari-
ances σ2�Fhapt� of the force provided by the haptic aids. The effect of
haptic aid on σ2�Fpilot� was found to be statistically significant
[F�2; 14� � 7.508 and p < 0.05]. Post-hoc tests with Bonferroni
correction revealed that the DHA condition was statistically
significantly different from the other two conditions (Table 2). Pilots
applied lower forces with DHA in order to achieve the control task.
This was because DHA provided part of the force needed for the
tracking task, making the task less tiring for participants. The
variance σ2�Fhapt� of the force provided by DHAwas approximately
twice the variance of the force applied by participants (see Fig. 6a).
This indicates a large contribution of theDHA to the tracking task.On
the other hand, conditions IHA and NoHA were not significantly
different (Table 2).
The variance of control device deflection σ2�δCD� was clearly

reduced with the IHA (Fig. 6b). The ANOVA test confirmed that the
effect of the haptic aid on σ2�δCD� was statistically significant
(F�2; 14� � 12.300, p < 0.05). Post-hoc tests using Bonferroni
correction showed that the differences between IHA and the other
two cases were statistically significant (Table 2). Participants slightly
moved the stick from the center position in the IHA condition. This
behavior, combined with the large shift of the neutral point shown in
Fig. 6b, allowed participants to keep the tracking error close to zero.
Pilot performance was evaluated by comparing the variance of

the tracking error σ2�e� between the three tracking conditions.
Both the DHA and IHA led to a lower variance compared
with the NoHA condition (Fig. 6c). The ANOVA test showed that
the effect of the haptic aid on σ2�e� was statistically signif-
icant (F�1.2; 8.4� � 62.671, p < 0.05). Post-hoc tests using the

Bonferroni correction revealed that the differences between all the
conditionswere statistically significant (Table 2). Thus, both theDHA
and IHA helped participants in increasing performance. Although
performance differed only slightly between DHA and NoHA, the
variance in the IHA condition was approximately 80% lower than the
other two conditions. Figure 6c also shows the performance of DHA
and IHA with an infinitely compliant and an infinitely stiff human,
respectively. As explained in Sec. IV.E, the difference between the
two values is due to the influence of the force disturbance Fdist.
Nonetheless, it can be noted that in both DHA and IHA conditions,
participants improved the performance that theywould have obtained
by assuming a passive behavior (i.e., infinitely compliant or infinitely
stiff). This shows that a pilot who contributes actively to controlling
the aircraftmay achieve better performancewith respect to the passive
behavior described in the two extreme conditions.

B. Admittance

Figure 7 shows the admittance estimated with the three identifi-
cation methods in conditions NoHA, DHA, and IHA, averaged over
all participants. High VAF and coherence values Γ̂2

adm were found for
the ARX and the CSD-based estimates, respectively (see Fig. 8).
However, in the NoHA and DHA conditions, the CSD-based method
produced estimates that differed largely from those obtained with
ARX and CSD-ML methods at frequencies below 1 Hz. On the
contrary, the admittance values estimated by the ARX and CSD-ML
methods were similar. Only in the IHA case, the three methods gave
similar results.
As shown in previous papers [20,28], these differences could be

due to a bias that characterizes the CSD-based estimates when the so-
called noninterference hypothesis is not fulfilled, i.e., when the power
content of the visual error e is not negligible at frequencies ffdg
where the disturbance force Fdist has power.
To verify if the noninterference hypothesis was fulfilled during our

tracking conditions, the power content of e at frequencies ffdg
(where the disturbance force Fdist has power), fftg (where the target
trajectory θtar has power), and ffNg (where both forcing functions
have no power) is shown in Fig. 9. The power content of e at
frequencies ffdg is clearly not negligible for NoHA and DHA

Table 2 Results of post-hoc tests with Bonferroni correction for σ2�·� data

Dependent measures

Independent variables σ2�Fpilot� σ2�δCD� σ2�e�
Factor p Significance p Significance p Significance

DHAvs NoHA 0.091 a 1.000 c 0.057 a

IHA vs NoHA 1.000 c 0.011 b 0.000 b

IHA vs DHA 0.003 b 0.007 b 0.000 b

aSignificant (0.050 ≤ p < 0.100).
bHighly significant (p < 0.050).
cNot significant (p ≥ 0.100).
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conditions (14% and 22%of the total power, respectively), whereas it
is lower in the IHA case (7%). This explains the bias at low
frequencies in the CSD-based estimates for the NoHA and DHA
cases.
To better highlight differences between NoHA, DHA, and IHA,

the admittance values estimated in the three conditions are shown
together in Fig. 10 (dashed lines). Only estimates from the ARX
method are provided, because they are similar but smoother than
those obtained with the CSD-ML method. The admittance values
given by theCSD-basedmethod are not considered as these estimates
clearly contain a bias. In addition, average admittance values esti-
mated during the “classical tasks” are provided as a reference (contin-
uous lines). Admittance varied mostly at frequencies below 1 Hz.
Higher admittance values were found in the DHA condition with
respect to the NoHA condition. This indicates that participants were
more compliant with the DHA to follow the control action suggested
by the DHA force. On the other hand, admittance was lower during
the IHA condition. Thus, participants adopted a stiffer setting of their
arm, which allowed them to oppose the IHA force.
Note that participants varied their admittance over a larger range

during the classical tasks (see Fig. 10). More precisely, the admit-
tance during the PT (i.e., adopt maximum stiffness) was lower,
whereas the admittance estimates during RT (i.e., relax the arm) and
FT (i.e., adoptmaximumcompliance)were higher. Thus, participants
did not adopt maximum compliance during the DHA condition, or
maximum stiffness during the IHA condition. We hypothesize that
participants would be able to reach maximum and minimum admit-
tances only if they rely solely on forces provided by the haptic aids,
without trying to actively minimize the tracking error.
At frequencies above 1 Hz, the admittance of all tracking

conditions and classical tasks converged to similar values. The
shape of admittance magnitude had a slope of approximately
100 ��rad∕N�∕dec� � 40 �dB∕dec�, which corresponds to the slope

of the dynamics of a mass subjected to forces. This indicates that at
high frequencies the admittance was mainly determined by inertial
properties of the arm. The peak in the admittance of PTat frequencies
around 4 Hz is consistent with previous results [24].

C. Pilot Visual Response

The visual response Hvis describes how participants generate a
forceFpilot on the control device based on the error e presented on the
display. Note that in the literature, the visual response often refers to
the transfer function between the visual error and the stick control
deflection σCD [18]. As explained in Sec. III, we adopted a different
definition of Hvis not to include the haptic system in the visual
response. Only ARX and CSD-ML methods can estimate Hvis

directly. Results of the two methods are shown in Fig. 11, averaged
over all participants.
Despite the fact that ARX method provided smoother estimates,

both methods gave consistent results. The general shape of the visual
response estimates was very similar for NoHA and DHA conditions.
The estimates resembled a gain at low frequencies and a differentiator
at higher frequencies; i.e., the participants generated leads. The only
relevant difference between NoHA and DHAwas that the magnitude
of the visual response was lower at all frequencies for the DHA case.
This indicates that participants applied lower forces on the control
device in response to the visual tracking error. The IHA responsewas
similar to the DHA response at higher frequencies but resembled a
gain at frequencies below 0.7 Hz. Participants started to generate
leads at higher frequencies than in the NoHA and DHA conditions.

D. Control and Open-Loop Transfer Functions

The control transfer function Hcontrol represents the transfer
function from the visual error e to the deflection of the control device
δCD. In a compensatory tracking task without haptic aids, Hcontrol
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includes the pilot visual response VIS, the admittance ADM, and the
control device CD. However, in the control task shown in Fig. 3,
Hcontrol also accounts for the dynamics of the haptic aid (HDHA or
HIHA). Figure 12 depicts the estimated control transfer functions for
experimental conditions NoHA, DHA, and IHA with all identifi-
cation methods (CSD-based, CSD-ML, and ARX). For all condi-
tions, the coherence Γ2

control associated to the CSD-based method was
higher than 0.95. The estimates of Ĥcontrol were similar for the three
identification methods. The magnitude of Ĥcontrol changed slightly
between the conditions NoHA, DHA, and IHA, but the general shape
was similar. The estimates resembled a gain at low frequencies and a
differentiator at medium frequencies, as would be expected from the
dynamics of the controlled element [18]. The peak at high frequency
is due to the combined dynamics of the control device and the
neuromuscular system [18]. The effect of DHA and IHA is to de-
crease the magnitude of this peak, which results in improved closed-
loop stability and better performance [19].

The open-loop transfer function HOL represents the transfer
function from the visual error e to the position of the controlled
element θCE. In the control task shown in Fig. 3, it includes the control
response Hcontrol, the dynamics of the neutral point shift (only for
IHA), and the controlled element CE. Figure 13 shows the estimates
ofHOL given by the CSD-based, CSD-ML, and ARXmethods. High
coherence values Γ2

OL were found for the CSD-based estimates
(Γ2

OL > 0.95 at all frequencies). The three identification methods
gave similar estimates. At frequencies below 1 Hz, the open-loop
transfer functions resemble integrator-like dynamics for all NoHA,
DHA, and IHA conditions. These findings correlate favorably with
McRuer’s theories [18], which assess that pilots adapt their responses
to yield a combined pilot–aircraft dynamics similar to a single inte-
grator. Although these theories were developed for tracking tasks
without haptic aids, our results lend support to their validity alsowhen
haptic aids are used. The crossover frequencyωcwas about 0.3Hz for
NoHA and DHA cases, whereas it significantly increased to about
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Fig. 11 Pilot visual responses estimated with ARX and CSD-ML methods, averaged over all participants.
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Fig. 13 Open-loop responses estimated with the three identification methods, averaged over all participants.
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0.8Hzwith IHA (Fig. 13).A larger crossover frequency indicates that
the system has a faster dynamic response and an improved ability to
track the signal. This is in complete agreementwith high performance
found for IHA tracking condition (see Fig. 9).

VI. Conclusions

In this paper, two different approaches for haptic aids design, the
direct haptic aid (DHA) and indirect haptic aid (IHA), were evaluated
in a tracking task and compared with a baseline condition without
haptic support. The haptic aids were designed based on their effect on
human behavior. Both approaches allowed participants to increase
performance in tracking a target signal. In particular, the IHA out-
performed the DHA and the baseline condition. On the other hand,
the physical effort was significantly reduced by the DHA. This was
shown by a decreased variance of the force that participants applied
on the control device to perform the task.
Pilot control behavior was estimated with three identification

methods: the commonly used cross-spectral density (CSD)–based
method and the two novel autoregressive models with exogenous
inputs (ARX method) and CSD for a multiloop tracking task (CSD-
ML) method. The ARX and the CSD-ML methods gave similar
estimates, whereas the admittance estimated by the CSD-based
method contained a bias caused by noncompliance to the so-called
noninterference hypothesis [20,28].
The identified pilot responses indicated that participants adapted

their admittance to fully exploit the haptic aids. Participants adopted a
lower admittance (stiffer neuromuscular dynamics) to oppose the
IHA force, whereas they adopted a higher admittance (more compli-
ant neuromuscular dynamics) to better follow the control action
suggested by the DHA force. Furthermore, participants adapted their
visual response to yield an open-loop transfer function similar to a
single integrator in all the tracking conditions, with and without
haptic aids. This finding suggests that McRuer’s theories are still
applicable when haptic aids are used, although this needs to be con-
firmed with different control dynamics from those used in this study.
These results shed light on human adaptation to different designs

of haptic aids. However, the current study has considered only
nonpilot participants. It remains to be further investigated how real
pilots would interact with DHA and IHA aids.
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A human-centered design of haptic aids aims at tuning the force feedback based on the effect 

it has on human behavior. For this goal, a better understanding of the influence of haptic aids 

on the pilot neuromuscular response becomes crucial. In realistic scenarios, the 

neuromuscular response can continuously vary depending on many factors, such as 

environmental factors or pilot fatigue. This paper presents a method that online estimates 

time-varying neuromuscular dynamics during force-related tasks. This method is based on a 

Recursive Least Squares (RLS) algorithm and assumes that the neuromuscular response can 

be approximated by a Finite Impulse Response filter. The reliability and the robustness of the 

method were investigated by performing a set of Monte-Carlo simulations with increasing level 

or remnant noise. Even with high level of remnant noise, the RLS algorithm provided accurate 

estimates when the neuromuscular dynamics were constant or changed slowly. With 

instantaneous changes, the RLS algorithm needed almost 8s to converge to a reliable 
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Abstract—A human-centered design of haptic aids aims at
tuning the force feedback based on the effect it has on human
behavior. For this goal, a better understanding of the influence
of haptic aids on the pilot neuromuscular response becomes
crucial. In realistic scenarios, the neuromuscular response can
continuously vary depending on many factors, such as environ-
mental factors or pilot fatigue. This paper presents a method that
online estimates time-varying neuromuscular dynamics during
force-related tasks. This method is based on a Recursive Least
Squares (RLS) algorithm and assumes that the neuromuscular
response can be approximated by a Finite Impulse Response
filter. The reliability and the robustness of the method were
investigated by performing a set of Monte-Carlo simulations with
increasing level or remnant noise. Even with high level of remnant
noise, the RLS algorithm provided accurate estimates when the
neuromuscular dynamics were constant or changed slowly. With
instantaneous changes, the RLS algorithm needed almost 8s to
converge to a reliable estimate. These results seem to indicate that
RLS algorithm is a valid tool for estimating online time-varying
admittance.

I. INTRODUCTION

Haptic aids aim at helping pilots during a control task
by providing force feedback on the control device [1]. To
assess whether haptic forces have a positive effect on the
pilot performing the task, an insight is required into the
control behavior of the pilot. The dynamics of the neu-
romuscular system play an important role when trying to
investigate the effect of haptic aids on pilot behavior [2].
Previous works have investigated methods to estimate the
neuromuscular system during force-related tasks [3] or more
complex control tasks [2], [4], [5]. However, a key limitation
with much of the literature is that the estimation methods
assume a time-invariant neuromuscular response. In realistic
control scenarios, the neuromuscular response is likely to be
time-variant, since pilots change their behavior depending on
environmental variables, fatigue, etc. [6]. Thus, there is a need
for identification methods that can be used to assess the time-
varying nature of the neuromuscular response.

Ensemble methods have been applied to estimate time-
varying neuromuscular system [7]–[9]. These methods use a
series (ensemble) of input-output measurements to obtain a

least-square estimate of the system impulse response. Appli-
cation to experimental data showed that ensemble methods
provide reliable neuromuscular estimates [7]. However, these
methods require the same time-varying behavior for each
realization in the ensemble [7]. This is not suitable for a
generic control task, in which pilots are likely to change their
behavior depending on environmental variables.

Recently, a method based on the Morlet wavelet trans-
formation was used to estimate time-varying neuromuscular
response [6], [10]. This technique was able to identify a
simulated time-varying neuromuscular response without re-
quiring several repetitions of the same time-varying behavior.
However, the method was performed offline, i.e., it provided
the estimate of time-varying neuromuscular response only after
having collected all the measured data. Online estimation
becomes important in control tasks with haptic aids, since it
offers a means to continuously assess how pilots interact with
the haptic forces.

The aim of this paper is to present a proof of concept
and simulation evaluation of an online estimation technique to
be used for neuromuscular response estimation. The technique
uses a Recursive Least Squares (RLS) method that provides
an estimate of time-varying neuromuscular dynamics during
force-related tasks. The reliability and the robustness of the
method is analyzed by using a set of Monte-Carlo simulations.
Our ultimate goal is to apply the developed algorithm to
experimental data.

The paper is organized as follows. Section II provides an
overview of the interactions between the neuromuscular system
and the control device. Section III gives a brief overview of
the RLS algorithm, and Section IV presents how the RLS al-
gorithm was used for estimating a time-varying neuromuscular
response. In Section V results of Monte-Carlo simulations are
presented to assess the algorithm and identification approach.
Our conclusions are drawn in the final section.

II. CONTROL TASK

Humans interact with a generic Control Device, e.g., a
control stick or a steering wheel, by moving their arm. In



CD
δcd

Fdist

N

+
+

+

−

from CNS

ADM−1

Fhum

COMB
NMS

Fig. 1. Interaction of a pilot with the control device. The combined block
of the admittance and the control device (COMB) and the signal Fdist are
needed for the identification algorithm detailed in Section IV.

general, the movement of the arm has several degrees of
freedom. However, it can be simplified when considering the
manipulation of a control stick [5]. Firstly, we consider a
control stick that possesses one degree of freedom (lateral
axis). Secondly, an arm rest is employed to keep the elbow
at a fixed position. In this situation, humans tend to move the
control device by immobilizing the wrist and by rotating the
lower arm (hand and ulna) around the upper arm (humerus) [5].
Thus, the movement of the arm can be expressed as a rotation
of the lower arm around the upper arm, which corresponds to
a one-degree of freedom joint.

Fig. 1 shows a model for the interaction of a human arm
with a control stick in the one-degree of freedom situation.
The pilot generates a force Fhum to control the lateral de-
flection δcd of the Control Device (CD). At the same time,
proprioceptive sensors of the neuromuscular system of the
arm (NMS) sense the deflection δcd and its velocity (feedback
path in Fig. 1) [3].The dynamics of neuromuscular system are
described by the admittance ADM, which is defined as the
causal relationship between the force acting on the arm and
the position of the arm. All the elements of Fig. 1 are assumed
to be linear, and the signal N (Remnant) accounts for all the
unmodeled nonlinearities. The notation from CNS represents
all cognitive actions that are communicated from the Central
Nervous System, e.g., the pilot response to external visual cues.

The main components of the one-degree of freedom neu-
romuscular system are shown in Fig. 2 [3]. The block SKIN
represents the visco-elasticity of the arm contact with the
control device, generated by the skin of the hand. The block
INT describes the intrinsic arm dynamics, which include the
lumped mass of hand, lower arm, and upper arm, together
with the contractile and elastic components of antagonistic
muscles. The contractile components are activated by the
efferent neurons ACT. The muscle spindle sensory system is
represented by the reflexive dynamics REFL. Table I gives
an overview of the dynamics of each block. The dynamics
of the whole neuromuscular system are determined by the
settings of these components. Humans are able to adapt
the neuromuscular dynamics to the task they perform [2]–
[4]. In realistic control situations, e.g., during postural control
or driving tasks, humans vary their admittance continuously
depending on the external environment [6].

III. RECURSIVE LEAST-SQUARES ALGORITHM

This section presents a method that can be applied to
estimate dynamics of a time-varying neuromuscular system.

N

SKIN
+

−

from CNS

NMS

−
+

ACTREFL
+

+

INT

δcd Fhum

+

−

Fig. 2. Main components of the neuromuscular system of the human arm.

TABLE I. ELEMENTS OF NEUROMUSCULAR SYSTEM

Block Transfer Function Physical Meaning

INT Hint(s) =
1

mints2 + bints+ kint
Intrinsic muscle dynamics

SKIN Hskin(s) = bskins+ kskin Skin dynamics

REFL Hrefl(s) = (kas+ kvs+ kp)e
−τs Reflexive dynamics

ACT Hact(s) =
1

1

ω2
0

s2 + 2β
ω0
s+ ki

Activation dynamics

The method uses a Recursive Least Square algorithm to
estimate the impulse response of a system by approximating
the response with a discrete-time Finite Impulse Response
(FIR).

A. Impulse Response

A linear discrete time-varying system is completely de-
scribed by its impulse response. The impulse response
h(n · T,m · T ) represents the output of the system at time
instant n · T when presented with an impulse signal δ at time
instant m · T , where T represents the sample time [7]. To
simplify the notation, in the rest of the paper, the sample time
is omitted when describing time instants. The response of the
system y(n) to a generic signal u(n) is given by the discrete
convolution of the impulse response h(n,m) and the input
itself u(n) [7]:

y(n) = T

∞∑
m=−∞

h(n,m)u(m) (1)

Eq. (1) can be further simplified if h(n,m) describes a
physical system. The impulse response of a physical system is
causal, i.e. h(n,m) = 0 for n < m. Furthermore, the impulse
response of many physical systems (e.g., the neuromuscular
impulse response) becomes approximately zero after an initial
transient, i.e., h(n,m) = 0 for n > m + Nimp where
Nimp represents the system memory. For such systems, eq. (1)
becomes:

y(n) = T

n∑
m=n−Nimp

h(n,m)u(m)

= T [h(n,Nimp) . . . h(n, n) ]

[
u(n−Nimp)

. . .
u(n)

]
= T hT (n)u(n) (2)



In time-varying systems, the vector h(n) assumes different
values at each time step. However, if the system appears
as time-invariant for large periods of time and only varies
its dynamics seldomly, the vector h(n) remains constant for
large periods. Thus, if the dynamics of the system change
from a time-invariant condition h1 to a different time-invariant
condition h2, the following holds:

y(n) = T


hT1 u(n), n ≤ nlast
h(n)u(n), nlast < n < nfirst +Nimp

hT2 u(n), n ≥ nfirst +Nimp
(3)

where Nimp represents the system memory for both conditions,
and nlast and nfirst represent the last time sample where
h(n) = h1 and the first time sample where h(n) = h2,
respectively.

The change of the impulse response from h1 to h2 can be
estimated based on input and output measurements. To achieve
this, a Recursive Least-Squares algorithm can be applied.

B. Algorithm

A Recursive Least-Squares algorithm (RLS) can be used to
estimate the coefficients of the impulse response h(n) such that
the scalar product between the estimate h̃(n) and the measured
input u(n) best matches the measured output y(n) in a least
square sense [11]. In a time-invariant system the impulse
response h(n) does not vary with the time, i.e., h(n) = h1.
In this case, the estimate can be found as the optimal solution
that minimizes the cost function V :

V (h, n) =

n∑
i=0

ε2(i), ε(i) = y(i)− hT u(i) (4)

h̃(n) = min
h
V (h, n) (5)

and the solution is given by:

h̃(n) =

[
n∑
i=0

u(i)uT (i)

]−1 n∑
i=0

u(i)y(i) (6)

The cost function V in eq. (4) gives the same weight to all
the sample errors ε(i). If the system h(n) changes its dynamics
to a different value h2, the estimator in eq. (6) can not provide
reliable estimates, since V is influenced more by the sum of the
past errors than by the current error. To overcome this issue,
a forgetting factor λ is included that gives a smaller weight to
the errors occurred further in the past (0� λ < 1) [11]. The
cost function then becomes:

V (h, n) =

n∑
i=0

λn−iε2(i) (7)

The resulting expression for the optimal value h̃(n) is:

h̃(n) =

[
n∑
i=0

λn−iu(i)uT (i)

]−1 n∑
i=0

λn−iu(i)y(i)

= R−1D (n)p(n) (8)

where the matrix RD(n) is assumed to be nonsingular. This
assumption is satisfied only if the excitation signal u(n) is
persistently exciting.

TABLE II. RLS ALGORITHM

INITIALIZE SD(−1) = δI, δ can be the inverse of the input signal power

pD(−1) = [0 . . . 0]

FOR n ≥ 0 DO SD(n) =
1

λ

[
SD(n− 1)−

SD(n− 1)u(n)uT (n)SD(n− 1)

λ+ uT (n)SD(n− 1)u(n)

]
pD(n) = λpD(n− 1) + y(n)u(n)

The algorithm, written as in eq. (8), requires the compu-
tation of the inverse of RD(n) at each time step. However,
this computation can be avoided by using the matrix inversion
lemma [11], which allows for calculating the inverse of the
matrix RD(n) from the value calculated at the previous time
step RD(n − 1). Table II shows the resulting RLS algorithm
(SD(n) = R−1D (n)).

IV. APPLICATION OF A RLS ALGORITHM FOR
ESTIMATING ADMITTANCE

In this paper, the RLS algorithm is applied to estimate the
time-varying dynamics of the neuromuscular system during
force-related control tasks, the so-called classical tasks [12].
In these tasks, humans are asked either to resist (Position Task,
PT) or to be compliant (Force Task, FT) with an external
disturbance Fdist applied on the control device, see Fig. 1.
To achieve best performance in PT and FT, humans need to
assume minimum and maximum admittance, respectively [12].
Thus, switching between the two different classical tasks
induces humans to vary their admittance between extreme
values. Note that the contribution of the central nervous system
can be assumed negligible in these tasks (from CNS = 0, see
Fig. 1), since the cognitive action of the human is known to
be limited [12].

As a first step, the RLS algorithm is applied to estimate the
dynamics from the external force Fdist to the control device
deflection δcd (dynamics of COMB in Fig. 1):

h̃comb(n) = RLS
(
{Fdist(i), δ(i)}i=0,...,n

)
(9)

Note that the RLS algorithm approximates the impulse re-
sponse of COMB with a Finite Impulse Response h̃comb(n).

The Fourier Transform of h̃comb(n) represents an estimate
of the frequency response of the system COMB. Since the
system COMB represents the combined dynamics of the con-
trol device and the neuromuscular admittance, the frequency
response of the neuromuscular admittance can be estimated by
using block diagram algebra:

H̃adm(ω, n) =
Hcd(ω)H̃comb(ω, n)

Hcd(ω)− H̃comb(ω, n)
(10)

where Hcd(ω) is the known frequency response function of
the control device, and H̃comb(ω, n) is the Fourier Transform
of h̃comb(n) at the current time n.

To apply the RLS algorithm, an external disturbance force
Fdist needs to be inserted into the control device. A common
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Fig. 3. Power spectral density and time realization of the disturbance force
Fdist. The multisine and pseudonoise components are shown separately.

choice for Fdist when estimating neuromuscular dynamics is
the multisine signal [13]:

Fdist(n) =

Nd∑
j=1

Dj sin(2πfDjn+ ψDj ) (11)

Each frequency fDj constitutes an integer multiple of a base
frequency f0. To capture all the neuromuscular dynamics,
a frequency range was chosen between 0.07 and 95 rad/s.
The amplitudes Dj were chosen according to the Reduced
Power Method, which allows a full-bandwidth estimation of
the admittance without influencing the human behavior at
low frequencies [13]. The phases ψDj were chosen randomly
to obtain an unpredictable signal. A cresting technique was
applied to avoid peaks in the time realization of the signal.

However, the RLS algorithm requires that the input must
be persistently exciting, which means that the matrix RD(n)
in eq. (8) must be nonsingular. Unfortunately, it can be shown
that the matrix RD(n) associated with the multisine in eq. (11)
is singular. To overcome this issue, a time realization of a
Gaussian white noise was added to the multisine signal. The
variance of the Gaussian noise was chosen small enough not to
affect the behavior of arm admittance at low frequencies [13],
while still guaranteeing the nonsingularity of the resulting
matrix RD(n). This additional pseudonoise signal is later
treated as a deterministic excitation signal similarly to the
multisine signal. Fig. 3 shows the time realization and power
spectral density of the resulting signal Fdist.

V. VALIDATION OF THE RLS ALGORITHM IN SIMULATION

A. Method

A Monte-Carlo simulation was performed to investigate
the robustness of the RLS algorithm in estimating the neu-
romuscular response with different levels of remnant noise
N . The control task in Fig. 1 was numerically simulated in
Matlab/Simulink. The dynamics of the controlled element CD
were chosen as [3]:

Hcd =
1

s2 + 50
(12)

The human was simulated to perform different control
tasks: opposing (Position Task) and being compliant (Force
Task) with the force disturbance Fdist. These tasks induce
humans to adopt minimum and maximum admittance, respec-
tively. The parameters for the compliant admittance Hc

adm

0 10 20 30 40 50 60 70 80 90

0

1

Time Simulation [s]

C
M

Fig. 4. Time evolution of the parameter CM, which determines the evolution
of the neuromuscular dynamics. Values 0 and 1 correspond to compliant and
stiff admittance, respectively.

TABLE III. ADMITTANCE PARAMETERS (C-COMPLIANT, S-STIFF)

mint bint kint bskin kskin ka kv kp τ ω0 β

kg
Ns

m

N

m

Ns

m

kN

m

Ns2

m

Ns

m

N

m
ms

rad

s
−

C 2.02 32.5 382 228 11.7 2.3 37.4 91 28.4 13.63 0.74
S 2.02 14.4 169 44 2.6 0 0 0 0 13.63 0.74

Fig. 5. Time evolution of the simulated impulse response hcomb.

and the stiff admittance Hs
adm were chosen as estimated in

a previous study, see Table III [3]. The time evolution of the
neuromuscular dynamics was chosen as in a previous work [6]:

Hadm = CM(t)Hs
adm + (1− CM(t))Hc

adm (13)

where t represents the simulation time, and CM(t) is shown
in Fig. 4. Fig. 5 depicts the resulting time evolution of the
impulse response hcomb(t).

As explained in Section IV, the input signal Fdist was
chosen as a multisine signal combined with a pseudonoise,
while the contribution of the central nervous system was
assumed negligible (from CNS = 0). The remnant signal N
was considered as Gaussian noise nw with variance σ2

w = 1
N2, filtered by a third-order low pass filter Hn [14]:

Hn(s) = Kn
ω3
n

(s+ ωn)(s2 + 2εnωns+ ω2
n)

(14)

where εn = 0.26 and ωn = 12.7 rad/s. The value of Kn was
gradually increased, in order to obtain three different ratios
between remnant standard deviation σn and signal standard
deviation σFhum (0%, 20% and 50%). For each value of Kn,
100 simulations were performed with different realizations of
the remnant noise.
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estimates correspond to σn/σF = 20%.

The simulated signals Fhum and δcd were sampled at
Fs = 100 Hz and given as inputs to the RLS algorithm.
Since the simulated impulse response was almost zero after
timp = 2 s of the impulse response time (see Fig. 5), the
memory of the estimated impulse response hcomb was set
to Nimp = Fs · timp = 200. The forgetting factor was set
to λ = 0.995, in order to obtain a trade-off between noise
rejection and capability of tracking the time-varying response
[15].

To evaluate the reliability of the estimates given by the RLS
algorithm, the normalized Root Mean Square error between the
estimated and the simulated hcomb was calculated:

RMSn(n) =

∑Nimp
i=0

(
h̃
(i)
comb(n)− h

(i)
comb(n)

)2
∑Nimp
i=0

(
h
(i)
comb(n)

)2 (15)

where n represents the current simulation time instant nT =

n/Fs, and h
(i)
comb(n) (h̃(i)

comb(n)) represents the i-th element of
hcomb(n) (h̃comb(n)). As an indicator for the reliability of the
admittance estimate in eq. (10), the relative error between the
estimated and the simulated frequency response functions was
calculated:

E(ω) =

∣∣∣H̃adm(ω, n)−Hadm(ω, n)
∣∣∣2

|Hadm(ω, n)|2
(16)

B. Results

Fig. 6 shows the time evolution of the mean and standard
deviation of RMSn(n) over the 100 simulations for different

(a) σn/σFhum = 0%. (b) σn/σFhum = 20%.

(c) σn/σFhum = 50%.

Fig. 8. Relative error between the estimated and the simulated admittance
frequency responses.
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t = 14, 17, 20, 23, 26 s. The corresponding σn/σF is 20%.

values of Kn. The time evolutions of RMSn(n) are similar
for all the different values of Kn. The estimate matches the
simulated dynamics with high accuracy (RMSn(n) < 0.3)
when the admittance parameters are constant or when they
change slowly. The value of RMSn(n) increases to 1.2 when
the admittance instantaneously varies from Hc

adm to Hs
adm,

and the impulse response hcomb(n) consequently varies from
hccomb to hscomb (t = 15 s).

To better investigate the behavior of the RLS algorithm
during the time interval around t = 15 s, the evolution of
the estimated h̃comb(n) is shown in Fig. 7. The plot shows
that the peak in the RMSn(n) is due to the high difference
between the simulated impulse responses h̃ccomb and h̃scomb. In
this situation, the algorithm RLS almost needs 8 s to converge
to an accurate estimate.

The frequency response of the admittance was estimated
by using eq. (10). Fig. 8 shows the relative error between the



simulated and the estimated frequency responses, see eq. (16).
Even with high level of remnant (σn/σF = 50%), the relative
error is low (blue color in Fig. 8) when the parameter are
constant or change gradually. On the other hand, the estimated
admittance needs more time to converge to the simulated
model when the admittance parameters change instantaneously
(t = 15 s). Fig. 9 shows the corresponding time evolution
of the estimated admittance response during the time interval
around t = 15 s for σn/σF = 20%.

VI. DISCUSSION

The main goal of the paper was to evaluate the reliability of
an RLS-based method in estimating time-varying neuromus-
cular system dynamics in a set of Monte-Carlo simulations.
This method uses a RLS algorithm to estimate the impulse
response of the combined system of admittance and control
device. Then, the admittance is calculated by using block
diagram algebra. To the best of our knowledge, this is the
first study to apply an RLS algorithm to estimate time-varying
neuromuscular system dynamics.

Low relative errors between simulated and estimated ad-
mittance indicate that the RLS-based method is able to track
slow changes in admittance dynamics. This is also valid for
high levels of remnant noise. On the other hand, the RLS-
based method needed about 8 s to provide reliable estimates
when the admittance changed instantaneously.

The convergence time and the robustness of the RLS-based
method are related to the chosen value of the forgetting factor
λ. As shown in a previous work [11], the convergence time of
a RLS algorithm is inversely proportional to (1−λ). Therefore,
choosing lower values of λ would reduce the convergence time.
However, lower values of λ affect the robustness of the RLS
algorithm to the remnant noise and could lead to instability
problems [16]. Therefore, the value of λ is a compromise
between convergence time and robustness to the remnant noise.

In our opinion, the selected value of λ could be employed
to identify changes in neuromuscular system dynamics during
a human-in-the-loop experiment. The chosen λ would allow
slow changes in pilot behavior to be identified, e.g. changes
due to fatigue. On the other hand, fast transient changes could
not be detected.

VII. CONCLUSIONS

This paper has presented a method to online estimate a
time-varying neuromuscular response. The method is based
on a Recursive Least Square algorithm and assumes that the
neuromuscular response can be approximated with a Finite
Impulse Response filter. A set of Monte-Carlo simulations
showed that the method provided accurate estimates in the
time- and frequency-domain when the neuromuscular response
was constant or changed gradually. In case of instantaneous ad-
mittance changes, the method converged to the new admittance
dynamics after about 8 s.

Future work will focus on testing the developed algorithm
with data measured during human-in-the-loop experiments and
on extending the RLS algorithm to estimate the admittance
during control tasks (with or without haptic aids).
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Haptic feedback systems can be designed to assist vehicular steering

by sharing manual control with the human operator. For example,

direct haptic feedback (DHF) forces, that are applied over the control

device, can guide the operator towards an optimized trajectory, which

he can either augment, comply with or resist according to his pref-

erences. DHF has been shown to improve performance (Olivari et al.

submitted) and increase safety (Tsoi et al. 2010). Nonetheless, the

human operator may not always benefit from the haptic support

system. Depending on the amount of the haptic feedback, the operator

might demonstrate an over- reliance or an opposition to this haptic

assistance (Forsyth and MacLean 2006). Thus, it is worthwhile to

investigate how different levels of haptic assistance influence shared

control performance.

The current study investigates how different gain levels of DHF

influence performance in a compensatory tracking task. For this

purpose, 6 participants were evenly divided into two groups according

to their previous tracking experience. During the task, they had to

compensate for externally induced disturbances that were visualized

as the difference between a moving line and a horizontal reference

standard. Briefly, participants observed how an unstable air- craft

symbol, located in the middle of the screen, deviated in the roll axis

from a stable artificial horizon. In order to compensate for the roll

angle, participants were instructed to use the control joystick.

Meanwhile, different DHF forces were presented over the control

joystick for gain levels of 0, 12.5, 25, 50 and 100 %. The maximal

DHF level was chosen according to the procedure described in

(Olivari et al. 2014) and represents the best stable performance of

skilled human operators. The participants’ performance was defined

as the reciprocal of the median of the root mean square error (RMSE)

in each condition.

Figure 1a shows that performance improved with in- creasing

DHF gain, regardless of experience levels. To evaluate the operator’s

contribution, relative to the DHF contribution, we calculated the ratio

of overall performance to estimated DHF performance without human

input. Figure 1b shows that the subject’s contribution in both groups

de- creased with increasing DHF up to the 50 % condition. The

contribution of experienced subjects plateaued between the 50 and

100 % DHF levels. Thus, the increase in performance for the 100 %

condition can mainly be attributed to the higher DHF forces alone. In

contrast, the inexperienced subjects seemed to completely rely on the

DHF during the 50 % condition, since the operator’s contribution

approximated 1. However, this changed for the 100 % DHF level.

Here, the participants started to actively contribute to the task

(operator’s contribution [1). This change in behavior resulted in

performance values similar to those of the experienced group Our

findings suggest that the increase of haptic support with our DHF

system does not necessarily result in over-reliance and can improve

performance for both experienced and inexperienced subjects.
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Abstract 

Delays between user input and the system’s reaction in control tasks have been shown to 

have a detrimental effect on performance. This is often accompanied by increases in self-

reported workload. In the current work, we sought to identify physiological measures that 

correlate with pilot workload in a conceptual aerial vehicle that suffered from varying time 

delays between control input and vehicle response. For this purpose, we measured the skin 

conductance and heart rate variability of 8 participants during flight maneuvers in a fixed-base 

simulator. Participants were instructed to land a vehicle while compensating for roll 

disturbances under different conditions of system delay. We found that control error and the 

self-reported workload increased with increasing time delay. Skin conductance and input 

behavior also reflect corresponding changes. Our results show that physiological measures 

are sufficiently robust for evaluating the adverse influence of system delays in a conceptual 

vehicle model. 

 



System Delay in Flight Simulators Impairs

Performance and Increases Physiological
Workload

Nina Flad1, Frank M. Nieuwenhuizen1, Heinrich H. Bülthoff1,2,
and Lewis L. Chuang1,�

1 Department of Perception, Cognition and Action,
Max Planck Institute for Biological Cybernetics, Tübingen

2 Department of Cognitive and Brain Engineering, Korea University
{nina.flad,frank.nieuwenhuizen,heinrich.buelthoff,

lewis.chuang}@tuebingen.mpg.de

Abstract. Delays between user input and the system’s reaction in con-
trol tasks have been shown to have a detrimental effect on performance.
This is often accompanied by increases in self-reported workload. In the
current work, we sought to identify physiological measures that corre-
late with pilot workload in a conceptual aerial vehicle that suffered from
varying time delays between control input and vehicle response. For this
purpose, we measured the skin conductance and heart rate variability
of 8 participants during flight maneuvers in a fixed-base simulator. Par-
ticipants were instructed to land a vehicle while compensating for roll
disturbances under different conditions of system delay. We found that
control error and the self-reported workload increased with increasing
time delay. Skin conductance and input behavior also reflect correspond-
ing changes. Our results show that physiological measures are sufficiently
robust for evaluating the adverse influence of system delays in a concep-
tual vehicle model.

1 Introduction

Delays between input and feedback in a closed-loop control task can result in
both perceptual and control instabilities. For example, in head-slaved visual-
ization systems (i.e., head-mounted virtual reality displays), temporal discrep-
ancies between head movements and display updating can result in oscillopsia
(also referred to as simulator sickness) in which the human operator perceives
an unstable virtual environment that “swims around” his head [1]. In vehicle
simulators, time delays between manual inputs and visual feedback can lead to
notable increases in performance errors as well as perceived workload [2–4]. The
latter can induce stress that induces physiological reactions in the autonomic
nervous system.

� The work in this paper was supported by the myCopter project, funded by the
European Commission under the 7th Framework Program.

D. Harris (Ed.): EPCE 2014, LNAI 8532, pp. 3–11, 2014.
c© Springer International Publishing Switzerland 2014
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Previous studies of flight performance have shown that visual feedback delays
can decrease performance and increase workload. For example, participants who
performed a low-level flight task under visual lag conditions produced larger
altitude errors and responded with higher workload scores on a questionnaire
[5]. In a different study, increasing system delays decreased piloting performance
as well as the subjective handling qualities of the aircraft, when pilots were
required to perform a side-step maneuver in a helicopter simulation as well as
actual test flight [4].

This decrease in performance can be more specifically attributed to the in-
fluence of visual feedback delays on closed-loop control performance. Trying to
compensate for a time-delayed error has been shown to result in pilot-induced
oscillations, wherein the control inputs from the pilot actually adds to the overall
system disturbance instead of subtracting from it [2]. This is especially detri-
mental to the performance of precision tasks, such as hovering or landing. If the
pilot is trained on such maneuvers in a simulator that suffers from time delays,
more time is necessary to acquire the targeted skill and the transfer of training
to real flight could be problematic, since a real aircraft with no system delays
can be expected to respond differently [6]. Moreover, training with system delays
has also been shown to increase the workload that is subjectively experienced
by the pilot [5].

Many studies employ questionnaires to assess the participants’ workload. Al-
though this approach is well established, it has known weaknesses; the measure-
ment is obtrusive and cannot be conducted during the task itself. Therefore,
self-assessment of workload relies on the participant’s recollection of the task,
which could be subjectively altered.

An increase in workload can induce stress, which in turn leads to psycho-
physiological reactions of the autonomic nervous system. For example, induced
workload can increase the heart rate as well as disrupt the regular fluctuations
of inter-heartbeat-intervals [7]. In addition, it can widen the perspiratory glands
and affect skin conductance [8]. Both heart activity and skin conductance can
be measured using skin electrodes, thus providing an online metric for stress and
workload during control activity itself.

In the current work, we investigate the influence of system delays on the
control of a personal aerial vehicle (PAV) concept model [9]. We introduced
delays of 0, 200, 400 or 600 ms and the influence of these delays was assessed
in terms of our participants’ control performance, control inputs, physiological
responses and questionnaire results.

The remainder of this paper is organized as follows. Section 2 describes the
flight task as well as the simulator and the aircraft model, followed by a de-
scription of data acquisition and analysis. Section 3 presents the results and
possible interpretations. In section 4 we summarize our findings and discuss the
implications for flight simulator studies.
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Table 1. The parameters for the disturbance in the roll axis of the vehicle

i ai ψi fi
1 0.5 0 0.0159
2 0.3 1 0.0796
3 0.2 0 0.0477
4 −0.2 1 0.0159

2 Methods

2.1 Participants

Eight male participants took part in our study. Their ages ranged between 22
and 34 years. All were researchers at the Max Planck Institute for Biological
Cybernetics and had normal or corrected-to-normal vision.

2.2 Apparatus and Flight Model

We evaluated the effect of system delay of a dynamic PAV concept model in
a fixed-base flight simulator. The simulator consisted of a display wall of nine
screens taking a field-of-view of 105◦ by 100◦. The participants used generic
helicopter controls consisting of foot pedals, collective stick and cyclic stick.

The outside visualization was provided by Flightgear, an open-source flight
simulator [10], while the control model was implemented in Matlab/Simulink
and running at 256 Hz. The control model simulated the vehicle’s dynamics and
calculated the position and orientation of the aircraft based on the current con-
trol inputs. The outputs were then transformed into world coordinates and sent
to the Flightgear computers that rendered the scene, namely San Francisco In-
ternational Airport. The landing zone measured approximately 55 by 260 meters
and was at the end of a runway (see Figure 1).

The PAVmodel represents an augmented helicopter with uncoupled cyclic, col-
lective and pedal controls. Its rotational dynamicswere of the Attitude Command-
Attitude Hold (ACAH) type, such that a constant deflection of the cyclic stick re-
sulted in a constant rotational attitude. Participants directly controlled a rate in
the heave axis with the collective stick. A constant input on the pedals resulted
in a specific rotational rate around the yaw axis. Subjects had full control over all
the vehicle’s degrees of freedom during each trial. In our experiment, a time delay
of 0, 200, 400 or 600 msec was introduced between the control input and vehicle
dynamics. These values were chosen based on a pilot study.

In addition, a disturbance was introduced in the roll axis during flight. Thus,
our participants had to compensate for this disturbance even whilst performing
the primary task of landing the PAV. The forcing function was a summation of
four sinusoidal functions
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Fig. 1. Landing site as seen from the participants upon trial initiation

d(t) =

n∑

i=1

ai ∗ sin(ψi ∗ π

2
+ 2π ∗ fi ∗ t) (1)

with the parameters ai, ψi and fi given in Table 1.

2.3 Procedure

Our participants were instructed to fly the PAV from their initial position at
the start of the trial towards the visible airport, follow the runway and land in
a designated area at the end of the runway. In addition, they were required to
maintain PAV stability and to compensate for disturbances in roll axis. Upon
a successful landing, they were required to press a button to end the trial. Al-
ternatively, each trial ended automatically if the maneuver was not successfully
completed within eight minutes.

Prior to data collection, every participant had at least five one-hour training
sessions with the simulator and the PAV model. During the first two training
sessions, there were neither disturbance nor system delay to facilitate user fa-
miliarization with the control devices and the vehicle’s dynamics. In addition,
participants had to learn to navigate by relying on visual landmarks near the
landing site. In the next two sessions, the roll disturbance was introduced, but
without any time delay. Each training session always consisted of five flight ses-
sions, separated by a thirty second break.
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After the first four training sessions, the participants experienced at least one
additional session under actual experimental conditions. The sessions for data
collection consisted of four trials that varied in roll disturbance and time delay
(0 ms, 200 ms, 400 ms and 600 ms) separated by a break of five minutes. In
this break, participants were asked to rate workload with a digital version of
the NASA-TLX questionnaire on a separate laptop. We collected ECG and skin
conductance values during flight as well as during the breaks.

2.4 Data Collection and Analysis

Subjective workload was assessed using a computerized NASA Task Load Index
(NASA-TLX). This rating scale consists of six independent scales, defined as
follows [11]:

– Mental Demand (e.g. thinking, deciding, remembering, looking, etc.)
– Physical Demand (e.g. pushing, pulling, activating, etc.)
– Temporal Demand (e.g. time pressure)
– Performance
– Effort (required to achieve the level of performance)
– Frustration Level

This questionnaire was administered after every condition. It provides an over-
all workload score as well as scores for each individual scale and the composition
of the overall score by the individual scales.

To measure performance, we calculated the root mean square error in com-
pensating for the roll disturbances as well as control input activity. When partic-
ipants experience a subjective loss of control or are performing badly, they tend
to alter their input behavior or control effort. Therefore, we analyzed changes in
the stick input activity. The stick input was collected at 256 Hz and analyzed in
the frequency domain. We evaluated spectral densities in the frequencies higher
than 0.1 Hz, since the disturbances took place in frequencies lower than 0.08 Hz.
Thus, any changes in bandwidth above 0.1 Hz could be attributed to the pilot
and not our disturbance function.

The first physiological measure is the skin conductance, which can be mea-
sured with a constant potential. The human skin possesses a natural electrical
resistance, but contains sweat glands serving as conductive channels. Higher ac-
tivity in the sweat glands results in lower resistance and better conductance
[12]. The sweat glands are innervated by sympathetic activity only and, there-
fore, the skin conductance can serve as an indicator for stress and anxiety [8].
For the analysis, we normalized the mean conductance of each trial to a baseline
measurement taken before the first test trial.

The second physiological measure is based on ECG measurements. The mean
heart rate changes constant in response to changing environmental demands.
These changes occur periodically and depend on the mental and physical state of
the human. They are evoked by activity in the (para)sympathetic nervous system
and have been found to be sensitive to work conditions, such as before and after
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a driving task [7], or different phases of a monitoring and detection experiment
[13]. We collected ECG data at 256 Hz and filtered it offline. The heart-beats in
this signal were detected and the instantaneous heart-rate for every inter-beat-
interval was calculated. We analyzed the spectral densities of the resampled time
series in the 0.07–0.14 Hz band as well as the 0.15–0.4 Hz band. The power in the
low frequencies is related to sympathetic activity, whereas the high frequency
band is almost completely influenced by the parasympathetic nervous system in
addition to respiration [14]. The low band is therefore widely regarded as the
better measure for workload and stress.

3 Results and Discussion

All data was submitted to a one-way repeated measures analysis of variance
(ANOVA) for the factor of time delay.

The questionnaire data showed an effect of system delay. The overall work-
load follows a linear trend (F(3,21)=22.44, p<0.01), indicating that increases in
system delay induced higher subjective workload in our participants. The same
linear trend can be found for the independent scales of the NASA-TLX. Inter-
estingly, even though the self-rated performance decreased and the frustration
increased, the participants did not “give up” on the task but increased their
effort accordingly. In addition, the overall composition of the workload stayed
the same (see figure 2). This suggests that the experimental manipulation of
system delay increased subjective workload without changing the nature of the
task itself.

Fig. 2. Subjective workload increases with system delays but does not vary in its
composition

As is the case with the self-rated performance, the objective error in compen-
sating for the disturbance increased with increasing system delay (F(3,21)=12.65,
p<0.01). Therefore, it follows that time delays have a deteriorating effect on the
control task.

This deterioration in performance with increasing system delays evoked cor-
rective inputs from the participants who tried to keep the vehicle stable. This
is indicated by a linear increase in the power of the stick activity between 0.1
to 0.5 Hz (F(3,21)=36.32, p<0.01; see Figure 3). Since these disturbances take
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Fig. 3. Increasing input activity at frequencies higher than the disturbance. This can
lead to pilot induced oscillations.

place at lower frequencies than these inputs, this behavior can destabilize the
vehicle even more, resulting in pilot induced oscillations.

In correspondence with subjective workload measurements, an increase in
system delays also resulted in higher skin conductance (F(3,21)=5.72, p=0.01,
see figure 4). This indicates that participants experienced stress and arousal.

Fig. 4. The skin conductance increases linearly with increasing time delay

Nonetheless, the ECG measures for heart-rate and heart-rate variability did
not show any significant changes to the manipulation of system delays. In addi-
tion, we did not find any changes between the test trials and breaks. Therefore,
ECG based measures are not a reliable metric for stress and arousal in the cur-
rent control task.
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4 Conclusions

Overall, our findings show that delays between the control input and system
response can impair control performance, elicit pilot-induced oscillations and
increase workload, both in terms of self-reported and physiological measures.
This is an important point to note in the design of virtual simulation systems,
such as driving and flight simulators, that are intended for the purpose of training
closed-loop control.

A system that is slow in responding to the human operator’s input could
induce the human operator to submit a larger response than is required for
precise maneuvers. This results in a larger than intended vehicle response that
needs to be corrected for subsequently. It could, thus, result in more errors
than necessary and even instill counter-productive behavior that will have to be
unlearned in the real world.

Our findings indicate that this loss of control has an impact on the operator’s
perceived and physiological workload. Therefore, system delays have a genuine
influence on the operator’s conscious sense of well-being as well as his physio-
logical system.

In this work, we demonstrated that skin conductance activity can offer a
complementary approach to the use of questionnaires. Changes in heart-based
measurements might be too slow to indicate the changes in stress levels experi-
enced by the human operator in our current experimental task. In contrast to
a questionnaire, an unobtrusive measure such as this can be employed to assess
multiple maneuvers in a complex mission. In addition to the traditional assess-
ment of novel controller systems for their handling qualities, skin conductance
measurements can allow the same systems to be evaluated for their physiological
comfort.

To conclude, we demonstrate that system delays can detrimentally affect con-
trol performance due to pilot-induced oscillations. This has an adverse effect on
the perceived workload of the operator as well as on his physiological system.
The approach described here is a viable protocol for the evaluation of novel
controller systems and simulators intended for closed-loop control.
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2 Department of Cognitive and Brain Engineering, Korea University
{menja.scheer,frank.nieuwenhuizen,heinrich.buelthoff,

lewis.chuang}@tuebingen.mpg.de

Abstract. Flight simulators are often assessed in terms of how well
they imitate the physical reality that they endeavor to recreate. Given
that vehicle simulators are primarily used for training purposes, it is
equally important to consider the implications of visualization in terms
of its influence on the user’s control performance. In this paper, we report
that a complex and realistic visual world environment can result in larger
performance errors compared to a simplified, yet equivalent, visualization
of the same control task. This is accompanied by an increase in subjective
workload. A detailed analysis of control performance indicates that this is
because the error perception is more variable in a real world environment.

1 Introduction

We rely on visual feedback to ensure stable motion and collision avoidance dur-
ing self-motion. Visual feedback informs the human operator of the immediate
difference between his desired goal and the consequences of his action. Thus,
subsequent actions can be planned to minimize this difference. For that reason,
it is important to ask how error feedback should be visualized to support good
control performance in the human operator.

The real world is a rich source of visual information for supporting the control
of self-motion. For example, the rate and the focus of expansion in retinal image
changes (i.e., optic flow) can respectively help us discern our velocity and head-
ing direction [1,2]. Given this, it is not surprising that virtual environments often
strive to achieve high visual realism. This is especially true for flight simulators
that are designed to train control performance, the success of which is subse-
quently vital for safety in a real vehicle. Several studies support this ambition. It
has been shown in a flight simulator study that increasing the realism of ground
terrain results in more accurate judgments in altitude as well as improved aim-
ing [3]. Similarly, the altitude perception in pilots improved with higher object
density in the visual environment [4].
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European Commission under the 7th Framework Program.
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Nonetheless, this strive towards high visual fidelity may not always be neces-
sary nor helpful. For example, it has been shown in a disturbance tracking task
that a simple instrument can better support the control performance of human
operator than optic flow alone [5]. Similarly, a driving simulator study demon-
strated that control performance is independent of whether a realistic view of
the road or just the lane itself is presented [6]. Given these findings, it stands to
reason that if all information necessary to complete a task could be condensed
in a simple instrument, it might be possible to achieve similar performance as
in a real-world environment. In fact, one might even expect better performance
from a simple visualization that exclusively presents only the information that
is necessary for performing a given task. This relieves the operator from parsing
the environment for task relevant information.

To investigate whether or not control performance is dependent on the realism
of the visualization, the present study evaluated human participants on a closed-
loop control task in a high-fidelity, fixed-base flight simulator. The structure
of the task is depicted in Figure 1. The reference signal ft(t) represents the
target to be followed. This reference signal was an unpredictable change in the
roll angle of the simulated vehicle. This was not directly shown to the Human
Operator. Instead, only the difference e(t) between the desired roll angle ft(t)
and the output of the system ϕ(t) was displayed. In performing this task, the
Human Operator has to continuously perceive his deviation from the target and
to manually operate a control device to minimize this perceived error.

Fig. 1. Closed-loop control task of the presented study. The difference e(t) between the
output of the system ϕ(t) and the unpredictable reference input ft(t) was presented
in two different ways. Either using a simplified instrumental view (Instrument) or a
complex visualization showing the outside view of an helicopter (Outside View). The
human operators’ task was to compensate for the disturbance introduced through the
reference signal.

In our implementation of this control scheme, the Human Operator moved
a control stick to continuously compensate for the displayed error. Moving the
stick to the left or right resulted in stick deflections that were proportional to
the roll rate ϕ̇(t) of the simulated aircraft. Thus, stick manipulations served as
a direct input u(t) to a Controlled System with single-integrator dynamics. The
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output of the system was fed back and subtracted from the reference signal ft(t),
resulting in the error e(t) that was shown to the Human Operator.

As mentioned, there were the two possible visualizations for presenting this
error feedback e(t) to the Human Operator. This allowed us to investigate the in-
fluence of visualization complexity and was the only experimental manipulation
in the current study. It is worth mentioning again that the reference signal ft(t)
was the same regardless of the visualization. In other words, the task difficulty
was the same regardless of the visualization shown. The Instrument visualization
was comparable to an attitude indicator (commonly referred to as an artificial
horizon), which is an aviation instrument that displays the aircraft’s angular po-
sition with respect to the horizon (Figure 2). For the Outside View visualization,
participants were presented with a view of a simulated real-world environment
from an aircraft cockpit (Figure 3).

In the current study, we were interested in how the visualization of error
feedback affected control performance. In addition, we were also motivated to
know whether this influence of visualization would be accompanied by changes
in subjective workload. To measure control performance, the output of the joy-
stick u(t) as well as the error e(t) were recorded. e(t) was the amount of error
that remained in the system after the Human Operator resolved the continu-
ous disturbance ft(t) to the system. Therefore, this value served as a basis for
evaluating control performance. u(t) was the amount of control input that the
Human Operator submitted to the Controlled System. This was treated as a mea-
sure for control effort. To assess subjective workload, we requested participants
to complete a computerized version of the NASA Task Load Index (NASA-TLX)
questionnaire [7] after each given visualization.

2 Methods

2.1 Participants

Twelve participants (eight male), were recruited from the participant database
of the Max-Planck Institute. They were aged between 21–37 years (mean: 29.1
years) and had normal or corrected-to-normal vision. All were right handed.
They gave their written consent before the experiment and were paid 12 Euros
per hour.

2.2 Apparatus and Flight Model

The current study was conducted in a fixed-based flight simulator that consisted
of a main PC and display cluster. The main PC controlled the experiment and
data collection with a customized software based on Matlab Simulink (Math-
works). This PC was connected to a cluster of nine independent visualization
PCs, via a local area network and commanded the timing and presentation of
the visualization using UDP triggers.

The visualization PCs were connected to a large display that consisted of
nine panels (total field-of-view: 105◦ x 100◦). In the Instrument condition, two
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Fig. 2. Instrument condition, showing an artificial horizon. The error e(t) is calculated
from the reference signal ft(t) and the roll angle ϕ(t).

lines were rendered on a blue background with Matlab Psychtoolbox, a black
line that represented e(t) and a white horizontal line that represented zero er-
ror [8,9] (Figure2). The Outside View condition used flight simulation software
(i.e., FlightGear; [10]) to present a cockpit view of a straight-ahead flight path,
through the hinterlands of San Francisco, wherein e(t) resulted in rotations of
the cockpit’s view frustum and, hence, the entire scene (see Figure 3).

Inputs to the Controlled System were submitted via a joystick (Extreme 3D
Pro, Logitech) that sampled at 256Hz. This only affected the roll angle of the
visualization. The other degrees of freedom of the Controlled System were fixed.

A computerized NASA-TLX questionnaire was presented to the participants
for the self-reporting of subjective workload via a laptop computer. This rating
scale consists of six sub-scales (Mental Demand, Physical Demand, Temporal
Demand, Performance, Effort, Frustration) [7].

2.3 Compensatory Tracking Task

In a compensatory tracking task, the participants needs to minimize the error
between a target signal and the output of the system. In the current study, a
disturbance ft(t) is continuously introduced into the system, which exclusively
perturbs the roll angle of the Controlled System. Here, ft(t) was designed as
quasi-random reference signal that consisted of a sum of 10 sine waves. These
comprising sine waves were non-harmonically related. The disturbance function
had a variance of 1.7 deg2. More specifically we used the following function [11]:

ft(t) =

N∑

j=1

A(j)sin(ω(j) · t+ φ(j)) (1)

The amplitude, frequency and phase of the sinusoids are given in Table 1.

2.4 Procedure

Two sessions comprised the full experiment and were conducted on separate
days. Two blocks were performed in each session and each block presented one
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Fig. 3. Fixed-base flight simulator, consisting of nine panels and a field-of-view of
105◦ x 100◦. Here the Outside View is shown. During the experiment, visual distur-
bances were experienced in the roll-axis around the horizon, that our participants were
instructed to compensate for with the provided joystick.

Table 1. Values of the ten non-harmonically related sine waves of the target signal
ft(t). With number of the sine wave j, the amplitude of the jth sine wave equals Aj ,
the frequency is ωj and the phase is φj .

j Aj in deg ωj in rad/s φj in rad

1 1.351 0.377 0.145
2 1.007 0.859 0.902
3 0.509 1.759 4.306
4 0.260 2.827 6.127
5 0.157 3.917 5.339
6 0.095 5.466 6.155
7 0.060 7.749 1.503
8 0.043 10.514 1.506
9 0.036 13.132 2.368
10 0.030 17.363 2.086

of the two possible visualizations (Instrument, Outside View). Three 5 mins
trials were presented per block, with 5 mins breaks between them. The order of
the blocks was counter-balanced for the visualization condition across sessions
and participants.

Each session began with the participant reading and signing a consent form
that provided experimental instructions. The computerized NASA-TLX ques-
tionnaire was administered after the completion of each block of trials for the
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given visualization condition. Altogether, the experiment took 3.5 hours for every
participant over the two sessions.

2.5 Data Collection and Analysis

To evaluate the performance, the normalized root mean squared value of the
error signal e(t) (nRMSerror) was calculated, as well as the root mean squared
value of the control input u(t) (RMSinput). The nRMSerror was normalized
with the disturbance that was experimentally introduced to the system. Thus, a
nRMSerror that is smaller than a value of 1 would indicate that our participants
reduced the disturbance in the system, while a value that was larger than 1
would indicate that the participant introduced additional disturbances to the
system. The nRMSerror can be further divided into the mean and variable error
as follows:

nRMSerror =
√
MeanError2 + V ariableError2 (2)

whereby MeanError is simply defined over all measured time points i as,

MeanError =

N∑
i=1

ei

N
(3)

and V ariableError as,

V ariableError =

√√√√√
N∑
i=1

(MeanError − ei)2

N
(4)

The mean error represents the distance of the mean of the error distribution
from zero (i.e. the target) and the variable error represents the spread of the
error distribution [12].

The RMSinput represents the control effort of the participants. A higher RM-
Sinput indicates that the participants submitted more joystick input into the
Controlled System.

These measures for control performance, control effort and subjective work-
load were submitted to a paired-sample t-test to test for statistical differences.
An alpha-level of 0.05 was adopted as the criterion for significance.

3 Results and Discussion

Figure 4A shows that the Outside View visualization resulted in a larger
nRMSerror than the Instrument visualization (t(11)=-6.54, p < 0.05). In fact,
all of our participants had nRMSerror values that were larger than 1 when the
Outside View visualization was presented. This means that their efforts to min-
imize error actually led to additional disturbances in the control system. It is
necessary to point out that this was not due to the difficulty of the compensatory
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control task per se. When presented with the Instrument visualization, all par-
ticipants were able to achieve nRMSerror values that were lower than 1. This
result highlights the critical influence of visualization on control performance.

Fig. 4. Box-plots for the measures of nRMSerror (A), mean error (B) and variable
error (C) across the condition of Visualization. Each box-plot shows the median, the
interquartile range and data range. Outliers are represented as red crosses.

There are several explanations for this large difference in nRMSerror. First,
our participants have failed to accurately estimate the desired goal from the Out-
side View visualization. Namely, the ideal attitude. If so, we would expect our
participants’ error distribution to be shifted away from the zero value, resulting
in a bigger bias (e.g. mean error). Next, our participants could have been unable
to accurately estimate the error from the Outside View visualization. If this was
true, we would expect a high variable error. Figures 4B and 4C show that the
mean error and the variable error were both larger for the Outside View com-
pared to the Instrument condition (Mean Error: t(11)=-5.77, p < 0.05; Variable
Error: t(11)=-6.02, p < 0.05). Therefore, our participants were less certain about
the ideal state and were less precise in their control when they were presented
with an Outside View visualization.

A time trace of the control error for both conditions ( Figure 5) shows these
two differences between the conditions. In the simple Instrument condition (light
gray), the control error varied around the target with smaller mean and variable
error. In the Outside View condition (black) the mean error is shifted over time
with larger fluctuations around it.

In addition, the Instrument condition resulted in more input activity than
the Outside View condition (t(11)=5.59, p < 0.05; see Figure 6). This indicates
that the Instrument visualization induced our participants to invest more con-
trol effort into the task than for the Outside View visualization. This could be
because error was better perceived from the Instrument visualization, resulting
in more and better targeted control input. Conversely, participants could have
submitted less control input in the Outside View visualization because they did
not perceive the need for it.
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Fig. 5. Control error over time for the Outside View (light gray) and Instrument
(black) condition. The data was filtered using a moving average filter with a window
size of 40 seconds. In the Instrument condition the error varied around the target while
in the Outside View condition, the mean of the error distribution is shifted over time.

Fig. 6. Box-plots for RMSinput across the condition of Visualization. Each box-plot
shows the median, the interquartile range and data range.

Subjectiveworkload, asmeasuredby theNASA-TLXscores, didnotdiffer across
the visualization condition (t(11)=2.07, p = 0.07). This supports our earlier con-
clusion. Although the participants did not perceive a difference in the difficulty of
the same task across the different visualizations, the difference in their ability to
accurately perceive their error resulted in very different control performance. The
NASA-TLX scores indicate that mental demand (23%), performance (29%) and
effort (23%) comprised more than 70% of the perceived workload in our task.
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These findings show that control performance is better supported by a visu-
alization that explicitly present the information that is required for the control
task. In the current experiment, an explicit representation of the error supported
the Human Operator in submitted the appropriate control inputs, without in-
creasing his perceived workload. Unfortunately, competence in a complex control
task such as piloting an aircraft with many degrees of freedom for a large reper-
toire of possible maneuvers often depend on multiple sources of information. It
may not be feasible to create dedicated instruments for every relevant informa-
tion channel. In this regard, the outside world might represent a more general
and effective source of information than spreading one’s visual attention across
multiple instruments. This warrants further investigation.

In conclusion, the visualization of the error feedback can result in different
levels of performance for two experimental conditions that are equivalent in terms
of their difficulty and perceived workload. A simple visualization might lack the
qualities of physical realism, but explicitly represents the primary property that
is of interest to the human operator. This has the advantage of preventing the
occurrence of unintended biases in error perception.
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Is the novelty-P3 suitable for indexing mental workload

in steering tasks?

Menja Scheer, Heinrich H. Bülthoff, Lewis L. Chuang

Max Planck Institute for Biological Cybernetics, Tübingen, Germany

Difficulties experienced in steering a vehicle can be expected to place

a demand on one’s mental resources (O’Donnell, Eggemeier 1986).

While the extent of this mental workload (MWL) can be estimated by

self-reports (e.g., NASA-TLX; Hart, Staveland 1988), it can also be

physiologically evaluated in terms of how a primary task taxes a

common and limited pool of mental re- sources, to the extent that it

reduces the electroencephalographic (EEG) responses to a secondary

task (e.g. an auditory oddball task). For example, the participant could

be primarily required to control a cursor to track a target while

attending to a series of auditory stimuli, which would infrequently

present target tones that should be responded to with a button-press

(e.g., Wickens, Kramer, Vanasse and Donchin 1983). Infrequently

presented targets, termed oddballs, are known to elicit a large positive

potential after approximately 300 ms of their presentation (i.e.,P3).

Indeed, increasing tracking difficulty either by decreasing the pre-

dictability of the tracked target or by changing the complexity of the

controller dynamics has been shown to attenuate P3 responses in the

secondary auditory monitoring task (Wickens et al. 1983; Wickens,

Kramer and Donchin 1984).

In contrast, increasing tracking difficulty—by introducing more

frequent direction changes of the tracked target (i.e. including higher

frequencies in the function that describes the motion trajectory of the

target)—has been shown to bear little influence on the secondary

task’s P3 response (Wickens, Israel and Donchin 1977; Isreal,

Chesney, Wickens and Donchin 1980). Overall, the added require-

ment of a steering task consistently results in a lower P3 amplitude,

relative to performing auditory monitoring alone (Wickens et al.

1983; Wickens et al. 1977; Isreal et al. 1980).

Using a dual-task paradigm for indexing workload is not ideal.

First, it requires participants to perform a secondary task. This pre-

vents it from being applied in real-world scenarios; users cannot be

expected to perform an unnecessary task that could compromise their

critical work performance. Second, it can only be expected to work if

the performance of the secondary task relies on the same mental

resources as those of the primary task (Wickens, Yeh 1983), requiring

a deliberate choice of the secondary task. Thus, it is fortunate that

more recent studies have demonstrated that P3 amplitudes can be

sensitive to MWL, even if the auditory oddball is ignored (Ullsperger,

Freude and Erdmann 2001; Allison, Polich 2008). This effect is said

to induce a momentary and involuntary shift in general attention,

especially if recognizable sounds (e.g. a dog bark, opposed to a pure

sound) are used (Miller, Rietschel, McDonald and Hatfield 2011).

The current work, containing two experiments, investigates the

conditions that would allow ‘novelty-P3’, the P3 elicited by the

ignored, recognizable oddball, to be an effective index for the MWL

of compensatory tracking. Compensatory tracking is a basic steering

task that can be generalized to most implementations of vehicular

control. In both experiments participants were required to use a joy-

stick to counteract disturbances of a horizontal plane. To evaluate the

generalizability of this paradigm, we depicted this horizontal plane as

either a line in a simplified visualization or as the horizon in a real-

world environment. In the latter, participants experienced a large

field-of-view perspective of the outside world from the cockpit of an

aircraft that rotated erratically about its heading axis. The task was the

same regardless of the visualization. In both experiments, we

employed a full factorial design for the visualization (instrument,

world) and 3 oddball paradigms (in experiment 1) or 4 levels of task

difficulty (in experiment 2) respectively. Two sessions were con-

ducted on separate days for the different visualizations, which were

counter-balanced for order. Three trials were presented per oddball

paradigm (experiment 1) or level of task difficulty (experiment 2) in

blocks, which were randomized for order. Overall, we found that

steering performance was worse when the visualization was provided

by a realistic world environment in experiments 1 (F (1, 11) = 42.8,

p \ 0.01) and 2 (F (1, 13) = 35.0, p \ 0.01). Nonetheless, this

manipulation of visualization had no consequence on our participants’

MWL as evaluated by a post-experimental questionnaire (i.e., NASA-

TLX) and EEG responses. This suggests that MWL was unaffected by

our choice of visualization.

The first experiment, with 12 participants, was designed to identify

the optimal presentation paradigm of the auditory oddball. For the

EEG analysis, two participants had to be excluded, due to noisy

electrophysiological recordings (more than 50 % of rejected epochs).

Whilst performing the tracking task, participants were presented with

a sequence of auditory stimuli that they were instructed to ignore.

This sequence would, in the 1-stimulus paradigm, only contain the

infrequent odd- ball stimulus (i.e., the familiar sound of a dog’s bark

(Fabiani, Kazmerski, Cycowicz and Friedmann 1996)). In the

2-stimulus paradigm this infrequently presented oddball (0.1) is

accompanied by a more frequently presented pure tone (0.9) and in
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the 3-stimulus paradigm the infrequently presented oddball (0.1) is

accompanied by a more frequently presented pure tone (0.8) and an

infrequently presented pure tone (0.1). These three paradigms are

widely used in P3 research (Katayama, Polich 1996). It should be

noted, however, that the target to target interval is 20 s regardless of

the paradigm. To obtain the ERPs the epochs from 100 ms before to

900 ms after the onset of the recognizable oddball stimulus, were

averaged. Mean amplitude measurements were obtained in a 60 ms

window, centered at the group- mean peak latency for the largest

positive maximum component between 250 and 400 ms for the

oddball P3, for each of the three mid-line electrode channels of

interest (i.e., Fz, Cz, Pz). In agreement with previous work, the

novelty-P3 response is smaller when participants had to perform the

tracking task compared to when they were only presented with the

task-irrelevant auditory stimuli, without the tracking task (F (1,

9) = 10.9, p \ 0.01). However, the amplitude of the novelty-P3

differed significantly across the presentation paradigms (F (2,

18) = 5.3, p \ 0.05), whereby the largest response to our task-irrel-

evant stimuli was elicited by the 1- stimulus oddball paradigm. This

suggests that the 1-stimulus oddball paradigm is most likely to elicit

novelty-P3 s that are sensitive to changes in MWL. Finally, the

attenuation of novelty-P3 amplitudes by the tracking task varied

across the three mid-line electrodes (F (2, 18) = 28.0, p \ 0.001).

Pairwise comparison, Bonferroni corrected for multiple comparisons,

revealed P3 amplitude to be largest at Cz, followed by Fz and smallest

at Pz (all p \ 0.05). This stands in contrast with previous work that

found control difficulty to attenuate P3 responses in parietal elec-

trodes (cf., Isreal et al. 1980; Wickens et al. 1983). Thus, the current

paradigm that uses a recognizable, ignored sound is likely to reflect an

underlying process that is different from previous studies, which

could be more sensitive to the MWL demands of a tracking task.

Given the result of experiment 1, the second experiment with 14

participants, investigated whether the 1-stimulus oddball paradigm

would be sufficiently sensitive in indexing tracking difficulty as

defined by the bandwidth of frequencies that contributed to the dis-

turbance of the horizontal plane (cf., Isreal et al. 1980). Three

different bandwidth profiles (easy, medium, hard) defined the linear

increase in the amount of disturbance that had to be compensated for.

This manipulation was effective in increasing subjective MWL,

according to the results of a post- experimental NASA-TLX ques-

tionnaire (F (2, 26) = 14.9, p \ 0.001) and demonstrated the

expected linear trend (F (1, 13) = 23.2, p \ 0.001). This increase in

control effort was also reflected in the amount of joystick activity,

which grew linearly across the difficulty conditions (F (1, 13) = 42.2,

p \ 0.001). For the EEG analysis two participants had to be excluded

due to noisy electrophysiological recordings (more than 50 % of

rejected epochs). A planned contrast revealed that the novelty- P3 was

significantly lower in the most difficult condition compared to the

baseline viewing condition, where no tracking was done (F (1,

11) = 5.2, p \ 0.05; see Fig. 1a). Nonetheless, novelty-P3 did not

differ significantly between the difficulty conditions (F (2,

22) = 0.13, p = 0.88), nor did it show the expected linear trend (F (1,

11) = 0.02, p = 0.91). Like (Isreal et al. 1980), we find that EEG-

responses do not discriminate for MWL that is associated with con-

trolling increased disturbances. It remains to be investigated, whether

the novelty-P3 is sensitive for the complexity of controller dynamics,

like it has been shown for the P3.

The power spectral density of the EEG data around 10 Hz (i.e.,

alpha) has been suggested by (Smith, Gevins 2005) to index MWL. A

post hoc analysis of our current data, at electrode Pz, revealed that

alpha power was significantly lower for the medium and hard con-

ditions, relative to the view-only condition (F (1, 11) = 6.081,

p \ 0.05; (F (1, 11) = 6.282, p \ 0.05). Nonetheless, the expected

linear trend across tracking difficulty was not significant (Fig. 1b).

To conclude, the current results suggest that a 1-stimulus oddball

task ought to be preferred when measuring general MWL with the

novelty-P3. Although changes in novelty-P3 can identify the control

effort required in our compensatory tracking task, it is not sufficiently

sensitive to provide a graded response across different levels of dis-

turbances. In this regard, it may not be as effective as self-reports and

joystick activity in denoting control effort. Nonetheless, further

research can improve upon the sensitivity of EEG metrics to MWL by

investigating other aspects that better correlate to the specific

demands of a steering task.
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Looming auditory warnings initiate earlier event-

related potentials in a manual steering task
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Automated collision avoidance systems promise to reduce accidents

and relieve the driver from the demands of constant vigilance. Such

systems direct the operator’s attention to potentially critical regions of

the environment without compromising steering performance. This

raises the question: What is an effective warning cue?

Sounds with rising intensities are claimed to be especially salient.

By evoking the percept of an approaching object, they engage a

neural network that supports auditory space perception and attention

(Bach et al. 2008). Indeed, we are aroused by and faster to respond to

‘looming’ auditory tones, which increase heart rate and skin con-

ductance activity (Bach et al. 2009).

Looming sounds can differ in terms of their rising intensity pro-

files. While it can be approximated by a sound whose amplitude

increases linearly with time, an approaching object that emits a

constant tone is better described as having an amplitude that increases

exponentially with time. In a driving simulator study, warning cues

that had a veridical looming profile induced earlier braking responses

than ramped profiles with linearly increasing loudness (Gray 2011).

In the current work, we investigated how looming sounds might

serve, during a primary steering task, to alert participants to the

appearance of visual targets. Nine volunteers performed a primary

steering task whilst occasionally discriminating visual targets. Their

primary task was to minimize the vertical distance between an

erratically moving cursor and the horizontal mid-line, by steering a

joystick towards the latter. Occasionally, diagonally oriented Gabor

patches (108 tilt; 18 diameter; 3.1 cycles/deg; 70 ms duration) would

appear on either the left or right of the cursor. Participants were

instructed to respond with a button-press whenever a pre-defined

target appeared. Seventy percent of the time, these visual stimuli were

preceded by a 1,500 ms warning tone, 1,000 ms before they appeared.

Overall, warning cues resulted in significantly faster and more sen-

sitive detections of the visual target stimuli (F1,8 = 7.72, p \ 0.05;

F1,8 = 9.63, p \ 0.05).

Each trial would present one of three possible warning cues. Thus,

a warning cue (2,000 Hz) could either have a constant intensity of

65 dB, a ramped tone with linearly increasing intensity from 60 dB to

approximately 75 dB or a comparable looming tone with an expo-

nentially increasing intensity profile. The different warning cues did

not vary in their influence of the response times to the visual targets

and recognition sensitivity (F2,16 = 3.32, p = 0.06; F2,16 = 0.10,

p = 0.90). However, this might be due to our small sample size. It is

noteworthy that the different warning tones did not adversely affect

steering performance (F2,16 = 1.65, p \ 0.22). Nonetheless, electro-

encephalographic potentials to the offset of the warning cues were

significantly earlier for the looming tone, compared to both the

constant and ramped tone. More specifically, the positive component

of the event- related potential was significantly earlier for the looming

tone by about 200 ms, relative to the constant and ramped tone, and

sustained for a longer duration (see Fig. 1).

The current findings highlight the behavioral benefits of auditory

warning cues. More importantly, we find that a veridical looming tone

induces earlier event-related potentials than one with a linearly

increasing intensity. Future work will investigate how this benefit

might diminish with increasing time between the warning tone and

the event that is cued for.
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Fig. 1 The topographical plot shows the 500 ms after sound offset,

with scalp maps plotted every 50 ms, for the constant (row 1), the

ramped (row 2), and the looming tone (row 3). The looming cues

evoked a strong positive deflection about 200 ms earlier than the

other sounds. The black bar at the bottom of the figure indicates

where the significance level of 0.01 was exceeded using a parametric

test on the combined Fz, FCz, Cz, and Pz activity
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Abstract 

This paper presents the implementation of a Multi-Input Single-Output fully coupled transfer 

function model of a civil light helicopter in hover. A frequency domain identification method is 

implemented. It is discussed that the chosen frequency range of excitation allows to capture 

some important rotor dynamic modes. Therefore, studies that require coupled rotor/body 

models are possible. The pitch-rate response with respect to the longitudinal cyclic is 

considered in detail throughout the paper. Different transfer functions are evaluated to 

compare the capability to capture the main helicopter dynamic modes. It is concluded that 

models with order less than 6 are not able to model the lead-lag dynamics in the pitch axis. 

Nevertheless, a transfer function model of the 4th order can provide acceptable results for 

handling qualities evaluations. The identified transfer function models are validated in the time 

domain with different input signals than those used during the identification and show good 

predictive capabilities. From the results it is possible to conclude that the identified transfer 

function models are able to capture the main dynamic characteristics of the considered light 

helicopter in hover. 
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ABSTRACT
This paper presents the implementation of a Multi-Input Single-Output fully coupled transfer function model of a civil
light helicopter in hover. A frequency domain identification method is implemented. It is discussed that the chosen
frequency range of excitation allows to capture some important rotor dynamic modes. Therefore, studies that require
coupled rotor/body models are possible. The pitch-rate response with respect to the longitudinal cyclic is considered
in detail throughout the paper. Different transfer functions are evaluated to compare the capability to capture the
main helicopter dynamic modes. It is concluded that models with order less than 6 are not able to model the lead-lag
dynamics in the pitch axis. Nevertheless, a transfer function model of the 4th order can provide acceptable results for
handling qualities evaluations. The identified transfer function models are validated in the time domain with different
input signals than those used during the identification and show good predictive capabilities. From the results it is
possible to conclude that the identified transfer function models are able to capture the main dynamic characteristics
of the considered light helicopter in hover.

INTRODUCTION

At the Max Planck Institute for Biological Cybernetics the in-
teraction is investigated between a pilot with limited flying
skills and augmented vehicles that will be part of a new con-
cept of personal air transport systems (Ref. 1). This study
will provide contributions to create a vehicle that is as easy
to fly as it is to drive a car. This project is focused on light
helicopters as these best reflect the properties of a vehicle that
could be used in a personal air transport system. The flight
state of interest throughout the project is hover, since it is
commonly considered one of the most difficult to perform for
a non-expert pilot. The goal of the project is to study which
augmented system features allow a pilot with limited flying
skills to reach similar performance as a highly-trained pilot.
The project is composed of three main phases. The first phase
is the identification of a rigid body dynamic model of a light
helicopter. The second phase represents the realization of aug-
mented systems for the model identified. The third phase con-
sists of handling qualities and human performance evaluations
in piloted closed loop control tasks, with and without the aug-
mented systems. For the three phases the MPI CyberMotion
Simulator (CMS) will be used, see Fig. 1. The 8 Degrees
Of Freedom (DOF) robotic arm has a large motion envelope
and is well suited to simulate the identified helicopter model
in order to study the effects of augmentation techniques on

Presented at the AHS 70th Annual Forum, Montréal, Québec,
Canada, May 20–22, 2014. Copyright c© 2014 by the Ameri-
can Helicopter Society International, Inc. All rights reserved.

non-expert pilots control performance.
This paper focuses on the first phase of the project, partic-

ularly on the implementation of a MISO (Multi Input Single
Output) fully coupled transfer function model of a light he-
licopter in hover. Such helicopter model could be used for
different possible applications, such as developing control-
systems, making pilot handling-qualities evaluations in sim-
ulations, evaluating the fidelity of visual- and motion-systems
of simulators and training pilots (Ref. 2). The implemen-

Fig. 1 The 8 DoF MPI CyberMotion Simulator
(http://www.cyberneum.de/).

tation of a system identification model was preferred to a
non-linear full-flight-envelope model. This choice relies on
studies which demonstrated the deficiencies of a complex
non-linear model in predicting some fundamental dynamics
(Ref. 3). Indeed, dynamics like primary roll, vertical response
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or pitch/roll cross-coupling may not be correctly captured if
the model is implemented to be valid over the full-flight-
envelope. Data collected for a specific condition can provide
system identification models which have been proven to give
better results. However, so far system identification for civil
purposes has not been common in the helicopter field because
of, e.g., expensive instrumentation usually used for military
purposes, unavailability of multiple hours of flight tests and
lack of interest from some civil companies in system identifi-
cation studies. Therefore, identifying a civil helicopter model
represents one of the main challenges of the project. The
identification method implemented in this study is based on
the frequency domain techniques developed in the last few
decades and applied in many rotorcraft works (Refs. 4, 5).

An important aspect analyzed in this paper is the choice of
the model dynamic complexity. A 6 DOF model is generally
adequate for handling qualities evaluations. However, higher
order model structures are necessary for applications like sim-
ulation validation or flight control system design (Ref. 6).
Many works demonstrated that high bandwidth control sys-
tems for helicopter need to include rotor degrees of freedom
(Ref. 7). Tischler investigated high order mathematical mod-
els and proved that for a hingeless single-rotor helicopter the
coupled body/rotor-flapping mode limits the gain on attitude
control feedback, while the lead-lag mode limits the gain on
attitude-rate control feedback (Ref. 8). A variable-stability
CH47 helicopter was used in (Ref. 9) to demonstrate how ro-
tor dynamics and control system lags can influence the feed-
back gain limits. Recent studies by DLR in Germany have
shown the importance of suppressing the air resonance due to
the regressive lead-lag mode and particularly visible for high
feedback gains in closed-loop controllers (Ref. 10). These
studies suggest that considering rotor’s DOF can be neces-
sary to implement augmented control systems and to analyze
their differences, which is one of the main goals of the current
project. For this reason, model complexity analysis will be
done to assess whether the identified transfer function models
can capture body/rotor couplings. Furthermore, model relia-
bility will be evaluated for handling qualities studies and for
control system design.

This paper will present results on:

• implementing a SISO non-parametric model of a civil
light helicopter in hover;

• conditioning the responses to consider the effect of sec-
ondary inputs and applying the composite windowing
method;

• implementing a MISO parametric model;

• analyzing the model complexity;

• validating the identified MISO parametric models in the
time domain with different input signals than those used
during the identification.

DATA COLLECTION FOR
IDENTIFICATION

The data for system identification were collected during two
test flights, each with a duration of one hour. A Robinson R44
Raven II was used, which is a light helicopter with a single
engine, a semi-rigid two-bladed main rotor and a two-bladed
tail rotor. Several piloted frequency sweeps were recorded for
each control axis to ensure the identification of the paramet-
ric transfer function models. Doublets and steps were also
recorded to allow the validation of the identified models in
the time domain with different input maneuvers. A prelimi-
nary training phase was necessary before and during flight to
ensure that the pilot could safely and correctly perform the
maneuvers of interest.

Two Global Positioning System antennas and an Inertial
Measurement Unit were used that consisted of Fiber Optic
Gyros and Micro Electrical Mechanical System accelerome-
ters. These instruments allowed collecting the signals defined
as the outputs of the model to be identified: the position of the
helicopter with respect to the inertial frame, the attitude, the
angular rates and the linear accelerations. Four optical sensors
were chosen to measure the input signals from the pilot (two
for the cyclic stick deflections, one for the collective lever,
and one for the pedals). A sample rate of 100 Hz was chosen
for all signals. A frequency range of excitation between 0.3
and 17 rad/s was considered during the piloted sweeps. The
details of the flight tests are presented in (Ref. 11)

In Fig. 2 the time data of two concatenated frequency
sweeps are shown for the longitudinal axis. Each frequency
sweep has a duration of about 100 seconds. The sweep ma-
neuvers start in hover with a few seconds of trim and end
with the same initial trim condition. The longest period of
the sweeps is of about 20 s which corresponds to a frequency
of about 0.05 Hz. Then the pilot slowly increases the fre-
quency of the sweep till the period of 0.4 s is reached (≈ 2.5
Hz). In the figure the primary helicopter responses to the lon-
gitudinal stick deflection are also shown. It can be seen how
the variation of the pitch rate reaches a maximum of about
20 deg/sec. This size of excitation ensures the identification
of models which are also accurate for maneuvers with large
excursions. The high frequency content visible in the pitch
rate (q) is not present in the longitudinal translational velocity
(u) and in the pitch angle (θ) where only low frequencies are
generally involved. This high frequency content is important
for the model complexity analysis involving body/rotor cou-
plings. For this reason, the pitch rate response q/δlong will be
considered in detail throughout the paper. Concatenating two
or more frequency sweeps as seen in Fig. 2 allows to obtain
a rich spectral content over the frequency range of interest.
Therefore the same procedure was applied to the other con-
trol axes.

IDENTIFICATION

In the past few decades system identification in the rotorcraft
field has grown considerably. This is probably due to a better
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Fig. 2 A frequency sweep in the longitudinal axis in hover.
δlong = cyclic longitudinal deflection, u = longitudinal
translational velocity, θ = pitch angle, q = pitch rate.

understanding of system identification theories and to novel
applications of identified helicopter models such as control
system design (Ref. 12). Among the different system iden-
tification methods the one proposed by Tischler in (Ref. 13)
has been applied for many helicopter studies. Very good re-
sults were obtained that confirmed and validated the relia-
bility of this method. The benefits derived from applying
this method are mainly due to the fact that it is frequency
based. This means that a non-parametric system identifica-
tion phase can be implemented which allows to get some
preliminary information about the model structure. More-
over, frequency responses conditioned by multiple partially
correlated inputs can be computed. Finally, procedures like
composite windowing and tools like the coherence function
can be used to improve and analyze the results. For these
reasons, this method was considered well suited for the pur-
pose of the current study. Many system identification works
based on this method were implemented by using the Compre-
hensive Identification from FrEquency Responses (CIFER R©)
software package. However, the results presented in this paper
were obtained by implementing the method with the numeri-
cal computation environment MATLAB R©. An important step
of the identification process is to determine the complexity
of the model and, therefore, which dynamics need to be in-
cluded. This generally depends on the frequency range of in-
terest and on the number of dynamical states measured during
the flight tests (Ref. 14). For the present project the collection
of data did not include any direct measurement of rotor-state

dynamics. Nevertheless, it will be shown how the frequency
range exited during the test flights allows to capture some ro-
tor dynamic modes. Therefore, the implementation of higher
order rotor/body models is possible.

Non-parametric SISO and MISO identification

The first step of the considered system identification method
is the generation of a frequency response database containing
the entire set of nonparametric single-input single-output fre-
quency responses. These responses are obtained by concate-
nating two or three frequency-sweep time histories collected
during the flight tests, as shown in Fig. 2. Then, the Fast
Fourier Transform is applied by using overlapped-windowed
spectral averaging. An example is shown in Fig. 3 with the
bode plot of the pitch rate response estimation to the longitu-
dinal stick deflection (q/δlong). Here a window of 20 seconds
was used. The figure shows also the coherence function which
is an important tool at this stage since it permits assessing the
goodness of the collected data (Ref. 15). This function can as-
sume values between zero and one and indicates the fraction
of the output spectrum linearly related to the input spectrum.
A decrease in the coherence function can be due to process
noise, nonlinearities, lack of input excitation or lack of rotor-
craft response. Generally, coherence values of 0.6 and above
are considered acceptable (Ref. 16). In Fig. 3 it can be seen
that the q/δlong frequency response shows a good level of co-
herence within the considered frequency range of excitation
(0.3-17 rad/s).

However, using only one window increases the accuracy
over a limited range of frequencies. This can be noticed
in Fig. 3 where at high frequencies there is an increase in
the random error that is reflected in the magnitude and the
phase oscillations, even though the coherence function re-
mains above the boundary of 0.6. Choosing a smaller win-
dow would reduce the random error but introduces a loss of
accuracy at lower frequencies. To overcome this issue a proce-
dure called composite windowing can be used during the non-
parametric identification. In this procedure the conditioned
frequency responses are computed with windows of differ-
ent size. Then, a weighted nonlinear Least-Squares mini-
mization method is implemented that provides the composite-
conditioned frequency responses. The new responses calcu-
lated in this way are characterized by a good coherence and
low random error over the entire frequency range of interest.
Usually, the choice of the windows is done by considering the
minimum and the maximum frequency desired for the iden-
tification (Ref. 17). For the present study a window of 40
seconds and one of 7 seconds were selected respectively as
the largest and the smallest one. Three more windows were
evenly distributed between these two for a total of five differ-
ent window sizes.

Helicopter system identification studies requires that
input-output couplings and multiple partially correlated in-
puts effects are taken into account in order to compute the
actual SISO frequency responses. The multi-input identifica-
tion technique allows to consider these effects by means of the
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Fig. 3 Pitch axis SISO frequency response q/δlong.

so-called conditioned auto- and cross-spectra (Ref. 15). These
allow to compute the conditioned frequency responses and the
related partial coherences. The application of the conditioned-
spectra and the composite method generated a set of 36 input-
output conditioned frequency responses and the associated
partial coherence functions. This result represent the final step
of the non-parametric system identification process. An ex-
ample of conditioned frequency response obtained by apply-
ing the composite windowing method is shown in Fig. 4 for
the pitch-rate response q/δlong. It is possible to notice how the
response has a different shape with respect to the one in Fig.
3 due to the subtraction of the partially correlated inputs ef-
fects. Furthermore, the accuracy increases at higher frequen-
cies due to the composite windowing procedure. The applica-
tion of these methods makes much easier to recognize some
important dynamical characteristics. At about 0.7 rad/sec the
influence of the unstable phugoid mode appears while the res-
onance at about 14 rad/sec is due to the lightly damped re-
gressive lead-lag mode. Similar analysis were considered for
the other on- and off-axis conditioned frequency responses in
which the effects of some rotor dynamic modes appeared as
well as for the pitch response. From these evaluations it was
possible to conclude that the considered frequency range of
excitation is large enough to capture some important rotor dy-
namic modes.

Transfer function modeling identification

Once all the input-output conditioned frequency responses
have been computed, two possible parametric system identi-
fication methods can be considered: the transfer function and
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Fig. 4 Pitch axis MISO conditioned frequency response
q/δlong with composite windowing method applied.

the state-space modeling identification. In this paper the trans-
fer function modeling procedure is implemented since it pro-
vides useful information on the fundamental dynamic charac-
teristics and allows many key applications, such as handling
qualities analysis and flight dynamic modeling for control sys-
tem design (Ref. 18). Furthermore, comparing the match-
ing quality of transfer-function models that differ in com-
plexity can give information concerning the order of the sys-
tem, the level of couplings and initial reasonable values for
some parameters that could later be used for building a state-
space identification model (Ref. 17). Transfer function mod-
els are obtained by fitting individual input-output frequency
responses through the minimization of magnitude and phase
errors. A detailed description of this approach is given in
(Ref. 13). Different models were selected to fit the data re-
sponse of each input-output axis over the selected frequency
range (0.3-17 rad/s). The choice of the models was done in
order to ensure a physical meaning and to avoid any over-
parameterization that could lead to poor predictive capabili-
ties.

The pitch-rate response to longitudinal stick input q/δlong
will be now considered in detail. Different models were se-
lected to fit the frequency response and to adequately capture
the main pitch dynamic modes. The first transfer function
model considered is a coupled body/rotor 6th order model
used to represent the effects of the phugoid, the short pe-
riod and the regressive lead-lag modes. The transfer function
model and the relative fit cost is presented in Table 1. It can be
noticed that a cost function is obtained well below 100, com-
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monly considered in literature as a limit to ensure satisfactory
accuracy.

Table 1 Pitch response transfer function models

Model Transfer functiona Fit cost

6th order 0.11(3.928)[−1,0.327][0.213,14.265]e−0.019s

[−1,0.683][0.93,2.065][0.1,14.336] 6.17

4th order 0.14(1.317)[−1,0.361]e−0.023s

[−1,0.733][0.947,1.33] 37.94

aShorthand notation: [ξ,ω] indicates s2+2ξωs+ω2, ξ damping
ratio, ω natural frequency (rad/sec); (1/T) indicates s+(1/T),
rad/sec

This result is reflected in the bode plot in Fig. 5 where
it can be seen how the transfer function response follows the
measured data with good accuracy. In this transfer function
model each dominant dynamic mode is represented with a
pair of complex conjugate poles. For the unstable phugoid
mode the complex poles are located at 0.683 rad/sec as it was
expected from the non-parametric MISO identification. An-
other pair of highly damped complex poles at 2.065 rad/sec
allows to model the short period. Its effect is visible in Fig.
5 with a decrease of the magnitude and the phase. The rotor
lead-lag mode effects are modeled with two complex poles at
14.336 rad/sec as also predicted in the non-parametric MISO
phase. The effect of this mode is recognizable in the mag-
nitude plot with a relevant peak and in the phase plot with a
roll off. Finally, a residual equivalent time delay of 0.019 sec-
onds is added to represent the effective delays related to sen-
sor filtering, linkage dynamics between the stick and the rotor
and additional non-modeled high frequency rotor dynamics.
The error function plot shown in Fig. 6, is computed as dif-
ference in magnitude (dB) and phase (deg) between the real
frequency response and the estimated response. The error is
compared with the mismatch boundaries defined in the MIL-
STD-1797 (Ref. 13). These boundaries represent the Maxi-
mum Unnoticeable Added Dynamics (MUAD) limits. When
they are exceeded a pilot can detect a divergence in the mod-
eled aircraft response characteristics (Ref. 19). They have
been considered to evaluate the effects of unnoticeable dy-
namics in many helicopter identification studies (Refs. 6, 20).
As can be seen in Fig. 6, the error is well within the bound-
aries for the entire frequency range of interest, which means
that a pilot would consider the model responses almost indis-
tinguishable from the actual flight response. This is generally
considered a good starting point for handling-qualities anal-
yses. Furthermore, it can be also concluded that this model
is well suited for augmented control system design due to its
ability to capture rotor DOFs relevant for this purpose.

A second 4th order transfer function model was consid-
ered for comparisons to the 6th order model. The 4th order
model transfer function shown in Table 1 is based on the the-
ory presented in (Ref. 21) where the classic fuselage longi-
tudinal modes (phugoid and short period) are modeled with
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Fig. 5 Bode plot of the transfer function 6th order model
for the pitch response q/δlong. Flight data in continuous
line. Model data in dashed line.
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Fig. 6 Error transfer function of the q/δlong response for
the 6th order model with MUAD boundaries.

two pairs of complex poles whereas the rotor mode effects are
included as equivalent time delay. The phugoid mode is rep-
resented with a pair of complex poles at 0.733 rad/sec which
again confirms the effect of this mode at around 0.7 rad/sec as
expected from the non-parametric MISO identification. The
fuselage short period mode is modeled with another pair of
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complex poles at 1.33 rad/sec. Furthermore, a larger equiva-
lent time delay is necessary than the one used for the 6th order
model to account for residual high frequency rotor dynamics.
As can be seen in Fig. 7 the reduced order model still presents
good accuracy over the entire frequency range but it is not
able to adequately capture the high frequency lead-lag mode
effects. For this reason the associated cost function shown in
Table 1 is higher than for the 6th order model but still within
the guideline boundary. In Fig. 8 it can be also noticed how
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Fig. 7 Bode plot of the transfer function 4th order model
for the pitch response q/δlong. Flight data in continuous
line. Model data in dashed line.

the error increases at higher frequencies due to the fact that
the rotor dynamic modes are not modeled. Nevertheless, it
remains within the MUAD mismatch boundaries. Therefore,
it is possible to conclude that the 4th order transfer function
model is well suited for handling-qualities analyses, but its
incapability to capture high frequency rotor modes makes it
inadequate for control system design. Other lower order mod-
els were considered to fit the pitch response but none of them
were capable to represent the main dynamic modes of the lon-
gitudinal response since cost functions were well above the
guideline limit of 100 and error functions were outside the
MUAD limits.

Further transfer function models that are associated with
responses considered relevant for hover and low-speed flight
are presented in APPENDIX A. These include the dominant
angular-rate responses to the cyclic and pedal control inputs
(q/δlong, p/δlat , r/δped) and the vertical axis acceleration to
the collective input (az/δcol). The described transfer function
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Fig. 8 Error transfer function of the q/δlong response for
the 4th order model with MUAD boundaries.

models are capable of capturing the rotor modes important for
control system design. For these identified models, cost func-
tion values less than 100 were obtained, which means that
they adequately represent the dynamics of the chosen heli-
copter in the considered hover condition. This is a favorable
result considering that only two hours of test flights with a
non-experienced test pilot were sufficient to collect reliable
data for system identification studies.

MISO model time-domain validation

The final step of the MISO system identification presented in
this paper involves the time domain validation of the identified
parametric models. This method is implemented by using dif-
ferent maneuvers (doublets or steps) from those used during
the identification process (frequency sweeps). The method is
based on the theory proposed by Tischler in (Ref. 13). Again
the pitch axis is considered in detail. As the transfer func-
tion models contained an unstable phugoid mode at around
0.7 rad/sec, the simulations used for validation can easily di-
verge from the measured helicopter response. Therefore, a
time record of a few seconds is considered to evaluate the
identified pitch model. Obviously, the maneuver performed
by the pilot involved the use of all the controls to maintain the
helicopter stability. Therefore, also the small contribution of
the other inputs is taken into account for the validation. Fig. 9
shows the result for the q/δlong response. The 6th and the 4th

order models responses are indistinguishable. The main con-
trol input δlong is shown over time and the model responses
are compared with the measured one. The fit error of both
models was approximately 1.4 and the Theil Inequality Co-
efficient (TIC) approximately 0.06 and these metrics are con-
sidered in literature to evaluate the goodness of the model pre-
diction (Ref. 22). A fit error less than 2.0 usually represents
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acceptable level of accuracy. The TIC is instead a normalized
criterion. A TIC equal to zero means perfect predictive capa-
bility while a TIC equal to one means no predictive capabil-
ity. Similar results are also obtained from the other responses
which are detailed in APPENDIX B.

CONCLUSIONS

This paper has presented results on the implementation of a
fully coupled transfer function model for a civil light heli-
copter in hover. From the obtained frequency responses, it
was deduced that the chosen frequency range of excitation al-
lows to capture some important rotor dynamic modes. There-
fore, studies can be done that require coupled rotor/body mod-
els like control system design. The pitch-rate response with
respect to the longitudinal cyclic was considered in detail
and it was concluded that transfer function models with order
lower than 4 cannot satisfactorily fit the main longitudinal he-
licopter modes since cost functions and Maximum Unnotice-
able Added Dynamics boundaries are exceeded. Furthermore,
it was concluded that a 6th order transfer function model is
necessary to properly capture the rotor high frequency lead-
lag mode needed to implement control system design studies.
However, a 4th order transfer function model can already pro-
vide acceptable results for handling qualities studies. Finally,
the identified transfer function models were validated in the
time domain with different input signals than those used dur-
ing the identification. Both models provided good predictive
capability as expected from the results obtained in the fre-
quency domain.

The results presented in this paper represent a start-
ing point for the development of a state-space identification
model. After that, the fully coupled state-space model will be
used to implement different augmented control systems. The
last step of the project consists of the validation of the aug-
mented systems through handling qualities and human per-
formance evaluations in piloted closed loop control tasks per-
formed with the MPI CyberMotion Simulator.

APPENDIX A

In this appendix, the transfer function models for the domi-
nant angular-rate responses to the cyclic and pedal control in-
puts (q/δlong, p/δlat , r/δped) and the vertical axis acceleration
to the collective input (az/δcol) are presented. The bode plot
of the transfer functions fitted on the conditioned frequency
responses and the relative error functions are shown in Figs
10-15. The obtained models and the cost functions are indi-
cated in Table 2. For each response the dominant modes are

Table 2 Transfer function models main hover responses

Model Transfer functiona Fit cost

p/δlat
0.338(0.98)[0.21,16.6][0.37,12.1]e−0.001s

[0.1,14.336][0.97,1.76][0.8,13.9] 34.16

r/δped
0.02[1,7.85]
[1,2.52] 95.23

az/δcol
0.05(0)(10.34)e−0.028s

(0.24) 15.98

aShorthand notation: [ξ,ω] indicates s2+2ξωs+ω2, ξ damping
ratio, ω natural frequency (rad/sec); (1/T) indicates s+(1/T),
rad/sec

chosen based on the models considered in literature. In Fig.10
the p/δlat lateral response shows a similar lead-lag mode to
the q/δlong longitudinal response and the same pair of com-
plex poles at 14.336 rad/sec is considered. Furthermore, the
dutch-roll and the lateral-flapping modes are modeled with
two pairs of complex poles at 1.76 and 13.9 rad/sec respec-
tively. In Fig. 12 the az/δcol frequency response shows the
coning inflow effect with a high frequency peak in the mag-
nitude plot. This phenomenon is particularly visible in hover
when the collective position rapidly changes. The coning in-
flow effect is approximated by adding a zero at 10.34 rad/sec
and a time delay (e−0.028s) to the 1st order model used to rep-
resent the heave mode. Finally, the r/δped frequency response
is presented in Fig.14. Here, the yaw damping mode is mod-
eled with a second order system. The error function plots in
Figs. 11, 13 and 15 show good results for the p/δlat and the
az/δcol responses but for the considered r/δped model the er-
ror function exceeds the boundaries for frequencies below 2
rad/sec.
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Fig. 10 Transfer function bode plot roll response p/δlat .
Flight data in continuous line. Model data in dashed line.

Frequency [Rad/s]

P
h
as

e
[d

eg
]

M
ag

n
it

u
d
e

[d
B

]

10−1 100 101

10−1 100 101

−100

0

100

200

−10

0

10

20

Fig. 11 Error transfer function of the p/δlat response with
MUAD boundaries.
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Flight data in continuous line. Model data in dashed line.
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APPENDIX B

The time domain validation results for the main on-axis re-
sponses in hover (lateral response p/δlat , heave response
az/δcol and yaw response r/δped) are shown in Figs 16-18. For
the heave az/δcol response validation a high frequency pole
is added to the transfer function model in Table 2 to ensure
physical causality. Different kinds of maneuvers (doublets,
steps) are considered from those used during the system iden-
tification process (frequency sweeps). As can be noticed in
the figures, good level of accuracy is achieved for all the re-
sponses.

For the p/δlat response in Fig. 16 a fit error function is
obtained of 0.04 and a Theil Inequality Coefficient (TIC) of
0.045. For the az/δcol response in Fig. 17 a fit error function
is obtained of 0.05 and a Theil Inequality Coefficient (TIC) of
0.07. For the r/δped response in Fig. 18 a fit error function
is obtained of 1.8 and a Theil Inequality Coefficient (TIC) of
0.063. These metrics indicate a good level of accuracy.
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This paper describes the different phases of realizing and validating a helicopter model for the 
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criteria using closed loop controllers and with a non-expert pilot. Results on simulated data 

were similar to results obtained with the real helicopter. Second, the validity of the model was 

assessed with a helicopter pilot in-the-loop in both a fixed-base simulator and the CMS. The 

pilot performed a vertical remask maneuver defined in ADS-33E-PRF. Most metrics for 

performance were reached adequately with both simulators. The motion cues in the CMS 
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Abstract

This paper describes the different phases of realizing and validating a helicopter model for the MPI CyberMotion
Simulator (CMS). The considered helicopter is a UH-60 Black Hawk. The helicopter model was developed
based on equations and parameters available in literature. First, the validity of the model was assessed by
performing tests based on ADS-33E-PRF criteria using closed loop controllers and with a non-expert pilot.
Results on simulated data were similar to results obtained with the real helicopter. Second, the validity of the
model was assessed with a helicopter pilot in-the-loop in both a fixed-base simulator and the CMS. The pilot
performed a vertical remask maneuver defined in ADS-33E-PRF. Most metrics for performance were reached
adequately with both simulators. The motion cues in the CMS allowed for improvements in some of the metrics.
The pilot was also asked to give a subjective evaluation of the model by answering the Israel Aircraft Industries
Pilot Rating Scale (IAI PRS). Similarly to results of ADS-33E-PRF, pilot responses confirmed that the motion
cues provided more realistic flight experience.

NOTATION

a0 main rotor blade lift curve slope (1/rad)

s rotor solidity (-)

u, v, w translational velocity components of
helicopter along fuselage x-,y-,z-axes
(m/s)

p, q, r angular velocity components of he-
licopter along fuselage x-,y-,z-axes
(rad/s)

pw, qw, rw angular velocity components of heli-
copter in hub axes (rad/s). With a bar
they are normalized by Ω

k1, k2, k3, k4 augmentation system parameters (-)

CT rotor thrust coefficient (-)

Ixx, Iyy, Izz moments of inertia of the helicopter
about the x-,y-,z-axes (kg m2)

Ma helicopter mass (kg)

R main rotor radius (m)

SE area of the empennage components
(fin or tail plane) or of the fuselage (m2)



T main rotor thrust (N )

V forward velocity (m/s)

VE total velocity incident on empennage
components (on fin or on tail plane) or
on fuselage (m/s)

θ, φ, ψ Euler angles defining the orientation of
the aircraft relative to the Earth (rad)

β0, β1c, β1s rotor blade coning, longitudinal and lat-
eral flapping angles (rad)

β1cw, β1sw longitudinal and lateral pitch angle in
hub axes (rad)

λ0, λ1c, λ1s rotor uniform and first harmonic inflow
velocities (normalized by ΩR)

θ0 collective pitch angle (rad)

θ1c, θ1s lateral and longitudinal pitch angle
(rad)

θ1cw, θ1sw lateral and longitudinal pitch angle in
hub axes (rad)

θ0T tail rotor collective pitch angle (rad)

θtw main rotor blade linear twist (rad)

η0, η1c, η1s collective lever and cyclic stick posi-
tion (normalized by the stick deflection
range)

γ Lock number (−)

ρ air density (kg/m3)

µ advance ratio (V/(ΩR))

µz velocity of the rotor hub in hub/shaft
axes (normalized by ΩR)

Ω main rotor speed (rad/s)

1. INTRODUCTION

An investigation on how to make a Personal Air Ve-
hicle (PAV) as easy to fly as driving a car is currently
conducted at the Max Planck Institute for Biological
Cybernetics, under the myCopter EU funded research
program.[1] In these studies, rotorcraft vehicles are
considered as the main reference since their dynam-
ics and kinematics best reflect those of a PAV. A key

facility that is essential for these studies is the MPI’s
Cybermotion Simulator (CMS) shown in Figure 1. The
CMS is an anthropomorphic robot with eight degrees
of freedom and a cabin as end-effector capable of
hosting a person. The cabin is equipped with a stereo
projection system. A 10 meters linear track allows to
increase the workspace of the robot. Different vehicle
dynamics models can be simulated in its large motion
envelope.

So far, experiments related to helicopter models were
already performed on the CMS but only with simplified
dynamics.[2] However, recent studies at the MPI led
to considering implementing a more complex and re-
alistic helicopter model. These studies consist of the
development of new human-machine interface tech-
nologies, [3] investigation of pilots behavior, training of
non-expert pilots, implementation of new control sys-
tems to be tested in simulation with human in-the-loop
and training of pilots for performing specific maneu-
vers for system identification purposes.[4] Therefore,
it was decided to implement a full-flight nonlinear dy-
namic helicopter model to be used in the CMS.

Figure 1: The 8 DoF MPI CyberMotion Simulator
(http://www.cyberneum.de/).

Nonlinear models for unmanned small-size he-
licopters have been investigated and tested in
literature.[5] On the contrary, nonlinear models for full-
size helicopters are not very common, due to the diffi-
culty of accurately implementing the components of
the vehicle and obtaining reliable aerodynamic pa-
rameters. Few nonlinear helicopter models have been
developed and tested in motion simulators but they
are not readily available.[6, 7]

This paper presents the main steps considered for de-
veloping a mathematical helicopter model for use in
the CMS. The complexity of the implemented model
and the large motion envelope of the simulator should
allow for simulating highly realistic flight scenarios. As
first step, the model was implemented and validated
by performing several test maneuvers with the help of
closed-loop controllers. After that, a helicopter pilot



was asked to evaluate the model in a fixed-base sim-
ulator. Finally, the same pilot evaluated the model in
the CMS.

The paper is organized as follows: Section 2 de-
scribes the development of the model. Section 3
presents the results of the time and frequency domain
analysis done on the model. Section 4 is dedicated to
the experiments with the helicopter pilot in the fixed-
base simulator and in the CMS. Finally, future steps
are summarized.

2. MODEL DEVELOPMENT

A 6 Degrees of Freedom (DoF) nonlinear mathemat-
ical model was built based on generic helicopter dy-
namics equations.[8] As shown in Figure 2, the he-
licopter model is composed of five subsystems that
represent the main helicopter components: the main
rotor, the tail rotor, the fuselage, the empennage and
the transfer functions from the pilot input to the blades
of the two rotors (flight control system). The main ro-
tor speed was assumed constant. In addition, the re-
action of the ground was modeled as a mass-spring-
damper system.

The outputs of every subsystem are forces and
torques in body frame of reference, from which lin-
ear and rotational accelerations are obtained. Then,
the Euler angles are calculated to define the attitude
of the helicopter.

u̇ = −(wq − qr) + X
Ma

− gsin(θ)

v̇ = −(ur − wp) + Y
Ma

+ gcos(θ)sin(φ)

ẇ = −(vp− uq) + Z
Ma

− gcos(θ)cos(φ)

MAIN
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TAIL

ROTOR

FUSELAGE

X = XMR +XF +XGR

Y = YMR + YTR + YF + YFN + YGR

Z = ZMR + ZF + ZTP + ZGR

M =MMR +MF +MTP +MGR

L = LMR + LTR + LFN + LGR

N = NMR +NTR +NF +NFN +NGR

Ixxṗ = (Iyy − Izz)qr + Ixz(ṙ + pq) + L

Iyy q̇ = (Izz − Ixx)rp+ Ixz(r
2 − p2) +M

Izz ṙ = (Ixx − Iyy)pq + Ixz(ṗ− qr) +N
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Figure 2: Block diagram of the helicopter model and
reaction of the ground

The resulting dynamic system has the form

ẋ = F{x,u, t}(1)

where the state vector x has the following elements:

x = {xf ,xr,xb}(2)

in which the subscripts f, r, b refer to the fuselage, the
rotors and the blades, respectively. The components
of the states xf , xr and xc are:

xf = {u, v, w, p, q, r, φ, θ, ψ}(3)
xr = {β0, β1c, β1s, λ0, λ1c, λ1s}(4)
xc = {θ0, θ1c, θ1s, θ0T }(5)

with all the components defined in the nomenclature.
The vector u represents the pilot inputs:

u = {η0, η1s, η1c, η0T }(6)

where η0 is the collective lever displacement, η1s the
longitudinal cyclic stick, η1c is the lateral cyclic stick
and η0T is the displacement of the pedals.
The helicopter chosen for this work is the UH-60 Black
Hawk because it is one of the most described in litera-
ture. The mechanical, dynamic and aerodynamic pa-
rameters were mainly taken from two sources.[9, 10]

The dynamic equations of the model are not repeated
here as they are described in detail in literature.[8]

Only several aspects of the model implementation
that received particular attention are detailed in the
following sections.

2.1. Rotors

Two main parameters of the main and the tail rotor are
the thrust coefficient CT and the total inflow λ0 pass-
ing through the blades. We employed a rather com-
plete model that, although valid only at steady state,
can model several aerodynamic effects. The thrust
coefficient and the total inflow equations are:

CT =
a0s

2

(
θ0

(
1

3
+
µ2

2

))
(7)

+
a0s

2

(µ
2

(
θ1sw +

p̄w
2

))
+

a0s

2

(
µz − λ0

2

)
+
a0s

2

(
1

4
(1 + µ2)θtw

)

λ0 =
CT

2
√

[µ2 + (λ0 − µz)2]
(8)



The two parametersCT and λ0 depend on each other;
this makes computing the flight condition complex.
Different approaches have been proposed to calcu-
late the solution of equations 7 and 8. For instance,
a closed-form solution for CT and λ0 can be found
for each specific flight condition (take off, hover, for-
ward flight and landing).[8] However, this approach
implies switching between different sets of equations
when simulating the model in different steady states.
Hence, an iterative solution based on a Newton-
Rhapson method was applied to arrive at a model that
is valid in all flight conditions.
Another issue we encountered during the develop-
ment was the relation between the blade pitch angles
and the displacement of the swashplate. Different
models [8, 12, 13] were tested in order to find the re-
lationship that better approximate the response of the
real helicopter.[14] Best accuracy was obtained with a
method that reduce much the effect of the blade lin-
ear twist θtw, that in helicopter like the UH-60 has an
important influence due to its big value:[13]

β0 = γ

[
θ0
8

(1 + µ2) +
θtw
10

(1 +
5

6
µ2) +

µ

6
θ1sw −

λ0
6

]
(9)

β1sw = θ1cw +
(− 4

3µβ0)

(1 + 1
2µ

2)
(10)

β1cw = −θ1sw+
− 8

3µ[θ0 − 3
4λ0 + 3

4µθ1sw + 3
4θtw]

1− 1
2µ

2
(11)

2.2. Aerodynamics of fuselage and em-
pennage

Aerodynamic equations for fuselage and empennage
generally change between different steady states and
different helicopters. Data from wind tunnel tests in
each steady state are necessary for describing the
evolution of these equations. Our approach consisted
of implementing generic equations that could also be
used for other helicopters than the UH-60 considered
in this paper. The generic equations for drag is given
as:

1

2
ρV 2

ESECEfriction
(E ∈ {fin, tailplane, fuselage})

(12)

The friction coefficient CEfriction
is defined differently

for the fuselage and for the empennage. For the fuse-
lage it is derived from table look-up functions made
with generalized aerodynamic coefficients.[8] For the
empennage it is defined as

CEfriction
=

{
ksin(α) : |Cfriction| < δ
−δ ∗ sgn(sin(α)) : |Cfriction| > δ

(13)

in which α is the angle of incidence of the air with the
tail plane and with the fin. In this model, the limit factor
δ and the scaling factor k are taken by approximated
wind tunnel equations of the empennage.[9, 10] This
was done for this helicopter because a detailed report
is present in literature.[10] However, these variables
can also be tuned manually or with the help of an ex-
perienced pilot.

2.3. Stability Augmentation System

The model input vector is composed of the four con-
trols (collective, lateral and longitudinal cyclic and
pedals). The pilot changes the blade pitch described
in (5) by moving the controls.

The UH-60 features a Stability Augmentation System
(SAS) that is used to aid the pilot. We only consid-
ered such a system for the cyclic controls, as these
are considered most difficult to use. The transfer func-
tions that connect the cyclic input of the pilot with the
main rotor blade pitch are

θ1c =
(a1η1c + b1) + k1p+ k2φ

1 + τs
(14)

θ1s =
(a2η1s + b2) + k3 q + k4θ

1 + τs
(15)

In which (a1, a2) and (b1, b2) define the angular ranges
for θ1c and θ1s. (k1, k2, k3, k4) are the parameters of
the SAS. The SAS parameters are tuned to obtain
frequency responses similar to the real helicopter as
it was active during all the tests.[15] At the same time
the contribution of the SAS is saturated in such a way
that physical limits of the blades are not exceeded.

3. VALIDATION WITH CLOSED-LOOP CON-
TROLLERS

This section presents validation tests performed with
closed-loop controllers such that the tests can be
performed without an experienced pilot. Different
analyses were performed that cover different aspects
of a helicopter model. Two tests will be presented
that were performed in the time and frequency
domain. The results were compared with flight test
data from literature. All simulations were done with
MATLAB/Simulink and a basic virtual environment



developed in Unity3D.

By definition the Aeronautical Design Standard (ADS-
33E-PRF) defines the desired Handling Qualities for
military helicopters.[16] The ADS-33E-PRF tests can
be divided in two groups: quantitative tests and MTEs
(Mission Task Elements). The quantitative tests re-
quires giving a specific input (i.e. steps and sweeping
sinusoids) and evaluating the responses of the rotor-
craft in the time and frequency domain. MTEs are
composed of specific maneuvers that a pilot needs to
accomplish while respecting some performance met-
rics. This section describes the quantitative tests
while the MTEs are detailed in Section 4.

3.1. Helicopter in hover with controllers

To control the helicopter in hover condition, controllers
were designed as Proportional, Integral, Derivative
(PID) regulators. These controllers regulated the ac-
tual speed of the rotorcraft to a reference value by
controlling the blade pitch angles. For the hover con-
dition, all the reference velocities were set to zero.
Table 1 presents the blade pitch of the model com-
pared with results from flight tests.[14] The compar-
ison shows that the collective and the longitudinal
pitch are almost the same while the lateral pitch has
a little difference. From this first simulation, it was
shown that trimming the model in hover resulted in
similar responses of the blades compared to a flight
test.

Table 1: Blade pitch angles in hover (angles are given
in degrees)

Flight test[14] Model
θ0 ' 8 ' 8
θ1c ' 3.5 ' 1.5
θ1s ' −3.5 ' −3

3.2. Attitude quickness test

The first quantitative test is the attitude quickness re-
sponse. The aim of this test is to study the quickness
of the rotorcraft at changing its attitude in response to
a step input. The evaluated metrics are

roll attitude quickness =
ppk
∆φ

(16)

pitch attitude quickness =
qpk
∆θ

(17)

The parameters ppk, qpk,∆φ and ∆θ are highlighted in
Figure 3.
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Figure 3: Lateral cyclic input for roll attitude quick-
ness. Parameters involved in the test are highlighted.
The range of the cyclic stick is between 0 and 1

To compare results of our model with those obtained
with a real helicopter, we replicated the same pilot in-
put [15] with a joystick to have a left and right roll,
and a forward and backward pitch while controlling
the other axes in hover with the PID controllers. The
small duration of the input and the use of the PID con-
trollers for the other axes allowed performing this task
without an experienced pilot.

Figure 4 and 5 show the results of the attitude quick-
ness test compared with real data.[15] The quickness
of the model with respect to the data of a flight test is
almost identical. This shows that the model reaches
Level 1 Handling Qualities.

3.3. Frequency response analysis

The second analysis performed is based on the fre-
quency response of the system. The main parame-
ters of interest are the bandwidth of the system and
the phase delay. The first parameter is defined by the
frequency at which the phase is 135◦ while the phase
delay is
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τp =
∆Φ2ω180

57.3× 2ω180
(18)

in which 2ω180 indicates two times the frequency at
which the phase is 180◦ while ∆Φ2ω180

is the phase
difference between ω180 and 2ω180.[8] At the Max
Planck Institute for Biological Cybernetics studies of
rotorcraft identification are conducted [17] based on
a method developed in literature.[18] Using this work,
the frequency responses of the model were obtained
for the roll, pitch and yaw degrees of freedom with the
helicopter in hover. A small amplitude sweeping sinu-
soid signal was given as input for the DoF of interest
and the corresponding Euler angle was considered as
output. The Bode diagrams for roll, pitch and yaw are
shown in Figure 6, in Figure 7 and in Figure 8, respec-
tively and the parameters required for equation 18 are
highlighted.
The phase delay results are given in Figures 9, 10
and 11. Two different observations can be made from
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Figure 6: Bode diagram for the roll channel

the results: the bandwidth of the identified system is
almost the same of the real vehicle for all three chan-
nels. However, the roll and pitch responses show a
different phase delay caused by a smaller ∆Φ2ω180

of the model compared with the real system at high
frequencies. The causes for this effect are currently
under investigation.

4. VALIDATION WITH A HELICOPTER PILOT

The tests described in the previous section showed
the similarity of the model with the real helicopter. In
the second step, the model was tested with a heli-
copter pilot. The tests were done in fixed-base sim-
ulator and a motion simulator. The same maneuver
was performed in both simulators. The pilot was in-
structed maintain the performance levels defined in
the ADS-33E-PRF criteria as best as possible during
the maneuver task.

4.1. Experimental setups

The first evaluation with the pilot was executed in a
fixed-base simulator. The simulation was executed
with a real-time pc. A complex virtual environment
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Figure 7: Bode diagram for the pitch channel

was developed in Unity3D, which was composed of
an airport with markers that were required to execute
the maneuver. A control-loaded cyclic stick, collec-
tive level and pedals were used (Wittenstein GmbH,
Germany), see Figure 12.

The experiment was performed with a screen with a
field of view of 230 deg horizontal and 125 deg verti-
cal, see Figure 13.

The second evaluation was performed in the MPI Cy-
berMotion Simulator (CMS), see Figure 1. This simu-
lator is a 8 DoF serial anthropomorphic robot with an
enclosed cabin. The same control-loaded input de-
vices were used as in the fixed-base simulator and
the same virtual environment was shown to the pilot.
The linear accelerations and rotational velocities from
the model were scaled by multiplication with factors
between 0.01 and 0.9. Washout filters are not used.
The scaling was relatively strong as the main purpose
of this test was to validate the model, and not to opti-
mize the motion cues presented to the pilot.

4.2. Description of the task

The evaluation was divided in two sequential parts.
The first part was executed only in the Panolab while
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Figure 8: Bode diagram for the yaw channel
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Figure 9: Roll frequency response analysis

the second was executed in both simulators. In the
first part the pilot tested four different flight conditions
to rate the responses of the model. In the second part
he performed a specific ADS-33E-PRF MTE.

The virtual environment used for both parts is shown
in Figure 14. Three squares in the ground, a bar
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Figure 10: Pitch frequency response analysis
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Figure 11: Yaw frequency response analysis

with two spheres in the starting position and differ-
ent markers between the squares are present in the
environment. These elements are collocated in such
a way different MTEs can be executed and the mark-
ers limit the displacements allowed to consider the re-
quired performances reached.

The goal of the first part was to check all the 6 DoF
of the rotorcraft using all the four inputs. This means
that in this phase no attention was paid in execution
time and to distance from the markers position.

In details the four maneuvers were:

1. Take-off along the bar shown in Figure 14 and
hover in front of the higher sphere. Subsequently
a vertical descent and a new hover in front of the

Figure 12: Control loaded cyclic stick, collective lever
and pedals used in the experiments

Figure 13: Experimental setup
(http://www.cyberneum.de/research-facilities/panolab)

Figure 14: Unity3D visualization used for the simula-
tor evaluations. The starting position is on the left-
most.

lower sphere.

2. A right lateral displacement from the starting
square on the ground to the second square and



back again.

3. Forward flight from the second square to the third
and back again.

4. A 360◦ turn around the bar.

After each maneuver, the pilot rating scale (PRS) was
used by the pilot to assess the model. This PRS
asks the pilot to evaluate the primary response and
the secondary response of each executed maneuver.
As an example, for the maneuver 1, the primary re-
sponse is given by the use of the collective for the
vertical movement, while the secondary response is
the compensatory action that the pilot does with the
pedals to counteract the yaw motion. In addition he is
asked to rate the difficulties in executing the maneu-
ver in relation to the response of the model and with
the visualization.

The second part is the execution of a specific
MTE.[16] The maneuver chosen is the vertical re-
mask. This maneuver is composed of three parts:

1. The maneuver starts with a vertical remask from
a stabilized hover at 75 ft to an altitude of 35 ft
(slightly modified from the original maneuver [16])

2. Lateral displacement of 300 ft

3. Stabilize in a new hover position

This maneuver was chosen for several reasons. First
of all it covers different flight conditions: the initial take
off to reach the first hover position where the maneu-
ver starts, the vertical descent and the fast lateral
displacement. Second with this maneuver it is pos-
sible to use all the inputs of the system: the pedals
are used to counteract turns during the displacement,
the lateral cyclic for the lateral displacement, the lon-
gitudinal cyclic for maintaining the longitudinal posi-
tion and the collective to maintain altitude. Third, with
the lateral displacement is possible to exploit the lin-
ear track of the CMS for a more realistic reproduction
of lateral accelerations. The markers placed in the
environment indicate the adequate or desired perfor-
mance as defined in ADS-33E-PRF for both condi-
tions.

The pilot that performed the test has experience with
real helicopters and with simulators. He has about
110 flight hours with around 700 take offs and land-
ings. For the simulators he flew a Bell UH-1D in dif-
ferent sessions.

4.3. Dependent measures

As the nonlinear dynamic helicopter model described
in this paper is intended to be used to investigate pi-

lots behavior, to record data for system identification
purposes and to test new control systems to use with
human in-the-loop, it is necessary to show that the
model can be used to perform complex tasks. There-
fore, more attention was given to some of the met-
rics as defined in ADS-33E-PRF [16] because they
are independent from possible visualization difficul-
ties. These metrics are

1. Maintain altitude after remask and during dis-
placement within +10 ft and -15 ft (± 10 ft to be
desired)

2. Maintain heading within ± 15 deg (10 deg to be
desired)

3. Achieve the final stabilized hover within 25 sec of
initiating the maneuver (15 sec to be desired)

4.4. Results

The Israel Aircraft Industries Pilot Rating Scale (IAI
PRS),[18] rates the primary and the secondary heli-
copter responses with a scale from 0 to 6. In this scale
0 means that the response cannot be evaluated while
6 means an exact match of the model response with
the real helicopter. The difficulty of execution scale,
which includes the stability characteristics dissimilari-
ties and the simulation difficulties, ranges from 0 to 5
where again 0 means that is not possible to evaluate
and 5 that there is an exact matching. Table 2 shows
the ratings given by the pilot.

Table 2: Pilot evaluation

Prim. res. Sec. res. Difficulty of exec.
Man.1 3.6 3.5 3.5
Man.2 3 3.5 2.5
Man.3 3.8 3.8 2.5
Man.4 4 4 4

Apart from the ratings, verbal comments of the pilot
were recorded:

”Optimal coupling between collective and pedals”

”The lack of motion makes it difficult to maintain alti-
tude during lateral or longitudinal displacement”

”The overall evaluation is very good.”

A consideration from the pilot’s remarks was that the
lack of motion made it difficult to fly the helicopter
model. The main problem was to maintain altitude
due to the fact that in the real helicopter the pilot



”feels” the movement more than he can see the move-
ment. So we expected an improvement of the perfor-
mance with a motion simulator. Table 3 shows perfor-
mances reached for both simulators:

Table 3: Performances in the two simulators

Panolab CMS
Metric 1 Adequate Desired
Metric 2 Desired Desired
Metric 3 NotReached NotReached

As expected there was an improvement of the first
metric. Figure 15 highlights the vertical position dur-
ing lateral displacement.
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Figure 15: Vertical position in the two simulators dur-
ing lateral displacement

The first problem caused by the lack of motion in the
fixed-base simulator was the difficult to stop the ver-
tical descend in front of the lower sphere. The sec-
ond and most important problem was the continuous
descent during all the lateral displacement. This re-
sulted in adequate performance. Both these problems
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Figure 16: Yaw Euler angle during the entire maneu-
ver

were not present in the CMS where the pilot stopped
exactly in front of the lower sphere and stayed well
within the performance bounds. In the motion simula-
tor the performance was reached in a desired way.

Heading was maintained in a desired way in both sim-
ulators. Figure 16 shows the results.

The time of execution of the entire maneuver was of
35 seconds in the fixed-base simulator and of 31 sec-
onds in the CMS. Since the performance is consid-
ered adequate if executed in 25 second, none of the
two maneuvers was satisfactory. However the im-
provement obtained in the CMS suggests that with
more training and better motion cueing might make
it possible to reach this metric too.

5. CONCLUSIONS

This paper has presented the development and the
validation of a fully non-linear helicopter model. The
implementation of the model was briefly described.
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Figure 17: Inertial position along x-,y-,z-axes during
the vertical remask maneuver. Two vertical lines indi-
cate when the maneuver starts and when ends

Different kind of tests were done to validate the im-
plemented model. Time and frequency domain tests
showed the correctness of the implementation. Fur-
thermore, validation measurements were performed
on a fixed-base simulator and a motion simulator
which showed favourable results.

Future steps involve further improvements to the
model and the use of more pilots for testing. More-
over different MTEs will be tested to really understand
the ability of the model to be used as a real helicopter.
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